Skip to main content

Autoantibody in Cancer

  • Chapter
  • First Online:
Biomarkers in Cancer Therapy

Abstract

An increasing number of autoantibody markers have been reported. These markers are highly sensitive and useful for the diagnosis of early-stage cancer. Anti-p53 autoantibody marker has been applied clinically to cancer diagnosis. Identification of NY-ESO-1 autoantibody in patients with esophageal squamous cell carcinoma (ESCC) has led to cancer immunotherapy. A comparison of the autoantibody markers for ESCC with those for colorectal cancer (CRC) suggests characteristics of each cancer type. Although both of the cancers involve p53 and MYC, ESCC may be driven by the cell cycle progression, whereas CRC appears to depend on intracellular signaling and suppression of apoptosis. An autoantibody analysis has been applied to other diseases, such as atherosclerosis, and has led to identification of some autoantibodies as common markers between cancer and atherosclerotic diseases. Thus, autoantibody analysis is useful not only for the diagnosis of many early-stage diseases but also for the comprehensive interpretation of healthy or disease conditions affecting the whole body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rapisuwon S, Vietsch EE, Wellstein A. Circulating biomarkers to monitor cancer progression and treatment. Comput Struct Biotechnol J. 2016;14:211–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hiwasa T, Shimada H, Ochiai T, et al. Serological identification of antigens by recombinant cDNA expression cloning (SEREX) using antibodies from patients with esophageal squamous cell carcinoma. In: Hiwasa T, editor. Moleculomics and Thereafter. Kerala: Research Signpost; 2006. p. 99–117. isbn:81-308-0019-5.

    Google Scholar 

  3. Sahin U, Tureci O, Schmitt H, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA. 1995;92:11810–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen YT, Scanlan MJ, Sahin U, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA. 1997;94:1914–8. PMID: 9050879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen YT, Boyer AD, Viars CS, et al. Genomic cloning and localization of CTAG, a gene encoding an autoimmunogenic cancer-testis antigen NY-ESO-1, to human chromosome Xq28. Cytogenet. Cell Genet. 1997;79:237–40. PMID: 9605863.

    Article  CAS  PubMed  Google Scholar 

  6. Oshima Y, Shimada H, Yajima S, et al. NY-ESO-1 autoantibody as a tumor-specific biomarker for esophageal cancer: screening in 1969 patients with various cancers. J Gastroenterol. 2016;51:30–4. PMID: 25906289.

    Article  CAS  PubMed  Google Scholar 

  7. Lethe B, Lucas S, Michaux L, et al. LAGE-1, a new gene with tumor specificity. Int J Cancer. 1998;76:903–8. PubMed: 9626360.

    Article  CAS  PubMed  Google Scholar 

  8. Zeng G, Aldridge ME, Tian X, et al. Dendritic cell surface calreticulin is a receptor for NY-ESO-1: direct interactions between tumor-associated antigen and the innate immune system. J Immun. 2006;177:3582–9. PubMed: 16951317.

    Article  CAS  PubMed  Google Scholar 

  9. Thomas R, Al-Khadairi G, Roelands J, et al. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front Immunol. 2018;9:947. PMID: 29770138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fuchs SY, Adler V, Buschmann T, et al. Mdm2 association with p53 targets its ubiquitination. Oncogene. 1998;17:2543–7. PMID: 9824166.

    Article  CAS  PubMed  Google Scholar 

  11. Shimada H, Arima M, Nakajima K, et al. Detection of serum p53 antibodies in mucosal esophageal cancer and negative conversion after treatment. Am J Gastroenterol. 1998;93:1388–9. PMID: 9707082.

    Article  CAS  PubMed  Google Scholar 

  12. Nakajima K, Suzuki T, Shimada H, et al. Detection of preoperative serum anti-p53 antibodies in gastric cancer. Tumour Biol. 1999;20:147–52. PMID: 10213922.

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki T, Funahashi K, Shimada H, et al. Diagnostic and prognostic impact of serum p53 antibody titration in colorectal cancer. Toho J Med. 2017;3:107–15.

    Google Scholar 

  14. Okada R, Shimada H, Otsuka Y, et al. Serum p53 antibody as a potential tumor marker in extrahepatic cholangiocarcinoma. Surg Today. 2017;47:1492–9. PMID: 28508195.

    Article  CAS  PubMed  Google Scholar 

  15. Shimada H. p53 molecular approach to diagnosis and treatment esophageal squamous cell carcinoma. Ann Gastroenterol Surg. 2018;2:266–73. PMID: 30003189.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shimada H, Kitabayashi H, Nabeya Y, et al. Treatment response and prognosis of patients after recurrence of esophageal cancer. Surgery. 2003;133:24–31. PMID: 12563234.

    Article  PubMed  Google Scholar 

  17. Suzuki T, Yajima S, Ishioka N, et al. Prognostic significance of high serum p53 antibody titers in patients with esophageal squamous cell carcinoma. Esophagus. 2018; https://doi.org/10.1007/s10388-018-0629-5. PMID: 29959634.

    Article  PubMed  Google Scholar 

  18. Shimada H, Takeda A, Arima M, et al. Serum p53 antibody is a useful tumor marker in superficial esophageal squamous cell carcinoma. Cancer. 2000;89:1677–83. PMID: 11042560.

    Article  CAS  PubMed  Google Scholar 

  19. Soo Hoo L, Zhang JY, Chan EK. Cloning and characterization of a novel 90 kDa ‘companion’ auto-antigen of p62 overexpressed in cancer. Oncogene. 2002;21:5006–15. PMID: 12118381.

    Article  PubMed  CAS  Google Scholar 

  20. Nakashima K, Shimada H, Ochiai T, et al. Serological identification of TROP2 by recombinant cDNA expression cloning using sera of patients with esophageal squamous cell carcinoma. Int J Cancer. 2004;112:1029–35. PMID: 15386348.

    Article  CAS  PubMed  Google Scholar 

  21. Shimada H, Nakashima K, Ochiai T, et al. Serological identification of tumor antigens of esophageal squamous cell carcinoma. Int J Oncol. 2005;26:77–86. PMID: 15586227.

    CAS  PubMed  Google Scholar 

  22. Shimada H, Ito M, Kagaya A, et al. Elevated serum antibody levels against cyclin L2 in patients with esophageal squamous cell carcinoma. J Cancer Sci Ther. 2015;7:60–6. https://doi.org/10.4172/1948-5956.1000326.

    Article  CAS  Google Scholar 

  23. Kuboshima M, Shimada H, Liu TL, et al. Identification of a novel SEREX antigen, SLC2A1/GLUT1, in esophageal squamous cell carcinoma. Int J Oncol. 2006;28:463–8. PMID: 16391802.

    CAS  PubMed  Google Scholar 

  24. Kuboshima M, Shimada H, Liu TL, et al. Presence of serum tripartite motif-containing 21 antibodies in patients with esophageal squamous cell carcinoma. Cancer Sci. 2006;97:380–6. PMID: 16630135.

    Article  CAS  PubMed  Google Scholar 

  25. Looi K, Megliorino R, Shi FD, et al. Humoral immune response to p16, a cyclin-dependent kinase inhibitor in human malignancies. Oncol Rep. 2006;16:1105–10. PMID: 17016600.

    CAS  PubMed  Google Scholar 

  26. Fujita Y, Nakanishi T, Hiramatsu M, et al. Proteomics-based approach identifying autoantibody against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma. Clin Cancer Res. 2006;12:6415–20. PMID: 17085654.

    Article  CAS  PubMed  Google Scholar 

  27. Shimada H, Kuboshima M, Shiratori T, et al. Serum anti-myomegalin antibodies in patients with esophageal squamous cell carcinoma. Int J Oncol. 2007;30:97–103. PMID: 17143517.

    CAS  PubMed  Google Scholar 

  28. Shiratori T, Shimada H, Kagaya A, et al. Sensitization against anticancer drugs by transfection with UBE2I variant gene into ras-NIH3H3 mouse fibroblasts. Anticancer Res. 2007;27:3227–33. PMID: 17970065.

    CAS  PubMed  Google Scholar 

  29. Fujita Y, Nakanishi T, Miyamoto Y, et al. Proteomics-based identification of autoantibody against heat shock protein 70 as a diagnostic marker in esophageal squamous cell carcinoma. Cancer Lett. 2008;263:280–90. PMID: 18334280.

    Article  CAS  PubMed  Google Scholar 

  30. Liu WL, Zhang G, Wang JY, et al. Proteomics-based identification of autoantibody against CDC25B as a novel serum marker in esophageal squamous cell carcinoma. Biochem Biophys Res Commun. 2008;375:440–5. PMID: 18722351.

    Article  CAS  PubMed  Google Scholar 

  31. Hiwasa T, Shimada H, Kuboshima M, et al. Decrease in chemosensitivity against anticancer drugs by an esophageal squamous cell carcinoma SEREX antigen. AISEC. Int J Oncol. 2009;34:641–8. PMID: 19212668.

    CAS  PubMed  Google Scholar 

  32. Shimada H, Kagaya A, Shiratori T, et al. Detection of anti-CUEC-23 antibodies in serum of patients with esophageal squamous cell carcinoma: a possible new serum marker for esophageal cancer. J Gastroenterol. 2009;44:691–6. PMID: 19407926.

    Article  CAS  PubMed  Google Scholar 

  33. Kagaya A, Shimada H, Shiratori T, et al. Identification of a novel SEREX antigen family, ECSA, in esophageal squamous cell carcinoma. Proteome Sci. 2011;9:31. PMID: 21696638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou JH, Zhang B, Kernstine KH, et al. Autoantibodies against MMP-7 as a novel diagnostic biomarker in esophageal squamous cell carcinoma. World J Gastroenterol. 2011;17:1373–8. PMID: 21455340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Wang K, Zhang J, et al. Using proteomic approach to identify tumor-associated proteins as biomarkers in human esophageal squamous cell carcinoma. J Proteome Res. 2011;10:2863–72. PMID: 21517111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang B, Zhang Z, Zhang X, et al. Serological antibodies against LY6K as a diagnostic biomarker in esophageal squamous cell carcinoma. Biomarkers. 2012;17:372–8. PMID: 22515502.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng Y, Xu J, Guo J, et al. Circulating autoantibody to ABCC3 may be a potential biomarker for esophageal squamous cell carcinoma. Clin Transl Oncol. 2013;15:398–402. PMID: 23054755.

    Article  CAS  PubMed  Google Scholar 

  38. Ye L, Guan S, Zhang C, et al. Circulating autoantibody to FOXP3 may be a potential biomarker for esophageal squamous cell carcinoma. Tumour Biol. 2013;34:1873–7. PMID: 23483489.

    Article  CAS  PubMed  Google Scholar 

  39. Gao H, Zheng Z, Mao Y, et al. Identification of tumor antigens that elicit a humoral immune response in the sera of Chinese esophageal squamous cell carcinoma patients by modified serological proteome analysis. Cancer Lett. 2014;344:54–61. PMID: 24157810.

    Article  CAS  PubMed  Google Scholar 

  40. Chai Y, Peng B, Dai L, et al. Autoantibodies response to MDM2 and p53 in the immunodiagnosis of esophageal squamous cell carcinoma. Scand J Immunol. 2014;80:362–8. PMID: 24965442.

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Zhang Q, Peng B, et al. Identification of glutathione S-transferase omega 1 (GSTO1) protein as a novel tumor-associated antigen and its autoantibody in human esophageal squamous cell carcinoma. Tumour Biol. 2014;35:10871–7. PMID: 25085586.

    Article  CAS  PubMed  Google Scholar 

  42. Xu YW, Peng YH, Chen B, et al. Autoantibodies as potential biomarkers for the early detection of esophageal squamous cell carcinoma. Am J Gastroenterol. 2014;109:36–45. PMID: 24296751.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou SL, Yue WB, Fan ZM, et al. Autoantibody detection to tumor-associated antigens of P53, IMP1, P16, cyclin B1, P62, C-myc, Survivn, and Koc for the screening of high-risk subjects and early detection of esophageal squamous cell carcinoma. Dis Esophagus. 2014;27:790–7. PMID: 24147952.

    Article  CAS  PubMed  Google Scholar 

  44. Qin JJ, Wang XR, Wang P, et al. Mini-array of multiple tumor-associated antigens (TAAs) in the immunodiagnosis of esophageal cancer. Asian Pac J Cancer Prev. 2014;15:2635–40. PMID: 24761876.

    Article  PubMed  Google Scholar 

  45. Peng YH, Xu YW, Guo H, et al. Combined detection of serum Dickkopf-1 and its autoantibodies to diagnose esophageal squamous cell carcinoma. Cancer Med. 2016;5:1388–96. PMID: 26988995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang HF, Qin JJ, Ren PF, et al. A panel of autoantibodies against multiple tumor-associated antigens in the immunodiagnosis of esophageal squamous cell cancer. Cancer Immunol Immunother. 2016;65:1233–42. PMID: 27553002.

    Article  CAS  PubMed  Google Scholar 

  47. Shiratori F, Shimada H, Nagata M, et al. Serum galectin-1 autoantibodies in patients with hepatocellular carcinoma. Toho J Med. 2016;2:67–72.

    Google Scholar 

  48. Xu YW, Peng YH, Ran LQ, et al. Circulating levels of autoantibodies against L1-cell adhesion molecule as a potential diagnostic biomarker in esophageal squamous cell carcinoma. Clin Transl Oncol. 2017;19:898–906. PMID: 28181176.

    Article  CAS  PubMed  Google Scholar 

  49. Li L, Liu M, Lin JB, et al. Diagnostic Value of Autoantibodies against Ezrin in Esophageal Squamous Cell Carcinoma. Dis Markers. 2017;2017:2534648. PMID: 28298808.

    PubMed  PubMed Central  Google Scholar 

  50. Xu YW, Liu CT, Huang XY, et al. Serum Autoantibodies against STIP1 as a Potential Biomarker in the Diagnosis of Esophageal Squamous Cell Carcinoma. Dis Markers. 2017;2017:5384091. PMID: 28852266.

    PubMed  PubMed Central  Google Scholar 

  51. Chen WX, Hong XB, Hong CQ, et al. Tumor-associated autoantibodies against Fascin as a novel diagnostic biomarker for esophageal squamous cell carcinoma. Clin Res Hepatol Gastroenterol. 2017;41:327–32. PMID: 27956255.

    Article  CAS  PubMed  Google Scholar 

  52. Kobayashi S, Hiwasa T, Arasawa T, et al. Identification of specific and common diagnostic antibody markers for gastrointestinal cancers by SEREX screening using testis cDNA phage library. Oncotarget. 2018;9:18559–69. PMID: 29719626.

    PubMed  PubMed Central  Google Scholar 

  53. Zhang JB, Cao M, Chen J, et al. Serum anti-TOPO48 autoantibody as a biomarker for early diagnosis and prognosis in patients with esophageal squamous cell carcinoma. Clin Res Hepatol Gastroenterol. 2018;42:276–84. PMID: 29170084.

    Article  CAS  PubMed  Google Scholar 

  54. Ura Y, Ochi Y, Hamazu M, et al. Studies on circulating antibody against carcinoembryonic antigen (CEA) and CEA-like antigen in cancer patients. Cancer Lett. 1985;25:283–95. PMID: 2578868.

    Article  CAS  PubMed  Google Scholar 

  55. Rimm DL, Holland TE, Morrow JS, et al. Autoantibodies specific for villin found in patients with colon cancer and other colitides. Dig Dis Sci. 1995;40:389–95. PMID: 7851204.

    Article  CAS  PubMed  Google Scholar 

  56. Sthoeger Z, Evron E, Goland S, et al. Anti-p53 autoantibodies in colon cancer patients. Ann N Y Acad Sci. 1997;815:496–8. PMID: 9186708.

    Article  CAS  PubMed  Google Scholar 

  57. Scanlan MJ, Chen YT, Williamson B, et al. Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer. 1998;76:652–8. PMID: 9610721.

    Article  CAS  PubMed  Google Scholar 

  58. Syrigos KN, Charalampopoulos A, Pliarchopoulou K, et al. Prognostic significance of autoantibodies against tropomyosin in patients with colorectal adenocarcinoma. Hybridoma. 1999;18:543–6. PMID: 10626684.

    Article  CAS  PubMed  Google Scholar 

  59. Nam MJ, Madoz-Gurpide J, Wang H, et al. Molecular profiling of the immune response in colon cancer using protein microarrays: occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3. Proteomics. 2003;3:2108–15. PMID: 14595809.

    Article  CAS  PubMed  Google Scholar 

  60. Reipert BM, Tanneberger S, Pannetta A, et al. Increase in autoantibodies against Fas (CD95) during carcinogenesis in the human colon: a hope for the immunoprevention of cancer? Cancer Immunol Immunother. 2005;54:1038–42. PMID: 15864586.

    Article  CAS  PubMed  Google Scholar 

  61. Kocer B, McKolanis J, Soran A. Humoral immune response to MUC5AC in patients with colorectal polyps and colorectal carcinoma. BMC Gastroenterol. 2006;6:4. PMID: 16409634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chen Y, Lin P, Qiu S, et al. Autoantibodies to Ca2+ binding protein Calnuc is a potential marker in colon cancer detection. Int J Oncol. 2007;30:1137–44. PMID: 17390015.

    CAS  PubMed  Google Scholar 

  63. He Y, Wu Y, Mou Z, et al. Proteomics-based identification of HSP60 as a tumor-associated antigen in colorectal cancer. Proteomics Clin Appl. 2007;1:336–42. PMID: 21136683.

    Article  CAS  PubMed  Google Scholar 

  64. Liu W, Wang P, Li Z, et al. Evaluation of tumourassociated antigen (TAA) miniarray in immunodiagnosis of colon cancer. Scand J Immunol. 2009;69:57–63. PMID: 19140877.

    Article  CAS  PubMed  Google Scholar 

  65. Babel I, Barderas R, Díaz-Uriarte R, et al. Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays. Mol Cell Proteomics. 2009;8:2382–95. PMID: 19638618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu W, Li Z, Xu W, et al. Humoral autoimmune response to IGF2 mRNA-binding protein (IMP2/p62) and its tissue-specific expression in colon cancer. Scand J Immunol. 2013;77:255–60. PMID: 23421499.

    Article  CAS  PubMed  Google Scholar 

  67. Hosono Y, Goto M, Kobayashi D, et al. Diagnostic relevance of autoantibody detection against inhibitors of apoptosis proteins in colon cancer and colon adenoma. Mol Clin Oncol. 2015;3:595–600. PMID: 26137273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Caorsi C, Niccolai E, Capello M, et al. Protein disulfide isomerase A3-specific Th1 effector cells infiltrate colon cancer tissue of patients with circulating anti-protein disulfide isomerase A3 autoantibodies. Transl Res. 2016;171:17–28.e1-2. PMID: 26772958.

    Article  CAS  PubMed  Google Scholar 

  69. Negm OH, Hamed MR, Schoen RE, et al. Human Blood Autoantibodies in the Detection of Colorectal Cancer. PLoS One. 2016;11:e0156971. PMID: 27383396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Álvarez-Fernández SM, Barbariga M, Cannizzaro L, et al. Serological immune response against ADAM10 pro-domain is associated with favourable prognosis in stage III colorectal cancer patients. Oncotarget. 2016;7:80059–76. PMID: 27517630.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kobayashi S, Hoshino T, Hiwasa T, et al. Anti-FIRs (PUF60) auto-antibodies are detected in the sera of early-stage colon cancer patients. Oncotarget. 2016;7:82493–503. PMID: 27756887.

    PubMed  PubMed Central  Google Scholar 

  72. Yang Q, Bavi P, Wang JY, et al. Immuno-proteomic discovery of tumor tissue autoantigens identifies olfactomedin 4, CD11b, and integrin alpha-2 as markers of colorectal cancer with liver metastases. J Proteomics. 2017;168:53–65. PMID: 28669815.

    Article  CAS  PubMed  Google Scholar 

  73. Ushigome M, Nabeya Y, Soda H, et al. Multi-panel assay of serum autoantibodies in colorectal cancer. Int J Clin Oncol. 2018;23:917–23. https://doi.org/10.1007/s10147-018-1278-3. PMID: 29691673.

    Article  CAS  PubMed  Google Scholar 

  74. Shimada H, Nabeya Y, Okazumi S, et al. Prognostic significance of CYFRA 21-1 in patients with esophageal squamous cell carcinoma. J Am Coll Surg. 2003;196:573–8. PMID: 12691934.

    Article  PubMed  Google Scholar 

  75. Ogura Y, Hoshino T, Tanaka N, et al. Disturbed alternative splicing of FIR (PUF60) directed cyclin E overexpression in esophageal cancers. Oncotarget. 2018;9:22929–44. PMID: 29796163.

    PubMed  PubMed Central  Google Scholar 

  76. Kashatus DF, Lim KH, Brady DC, et al. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol. 2011;13:1108–15. PMID: 21822277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature. 1991;349:132–8. PMID: 1846030.

    Article  CAS  PubMed  Google Scholar 

  78. Arase Y, Hiwasa T, Hasegawa R, et al. Prevention of v-Ha-Ras-dependent apoptosis by PDGF coordinates in phosphorylation of ERK and Akt. Biochem Biophys Res Commun. 2000;267:33–9. PMID: 10623570.

    Article  CAS  PubMed  Google Scholar 

  79. Walenta JH, Didier AJ, Liu X, et al. The Golgi-associated Hook3 protein is a member of a novel family of microtubule-binding proteins. J Cell Biol. 2001;152:923–34. PMID: 11238449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wen HL, Lin YT, Ting CH, et al. Stathmin, a microtubule-destabilizing protein, is dysregulated in spinal muscular atrophy. Hum Molec Genet. 2010;19:1766–78. PMID: 20176735.

    Article  CAS  PubMed  Google Scholar 

  81. Musinipally V, Howes S, Alushin GM, et al. The microtubule binding properties of CENP-E’s C-terminus and CENP-F. J Mol Biol. 2013;425:4427–41. PMID: 23892111.

    Article  CAS  PubMed  Google Scholar 

  82. Constantinou M, Tsai JY, Safran H. Paclitaxel and concurrent radiation in upper gastrointestinal cancers. Cancer Invest. 2003;21:887–96. PMID: 14735693.

    Article  CAS  PubMed  Google Scholar 

  83. Liang KP, Kremers HM, Crowson CS, et al. Autoantibodies and the risk of cardiovascular events. J Rheumatol. 2009;36:2462–9. PMID: 19833748.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Montecucco F, Vuilleumier N, Pagano S, et al. Anti-apolipoprotein A-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability. Eur Heart J. 2011;32:412–21. PMID: 21224292.

    Article  CAS  PubMed  Google Scholar 

  85. Satta N, Vuilleumier N. Auto-antibodies as possible markers and mediators of ischemic, dilated, and rhythmic cardiopathies. Curr Drug Targets. 2015;16:342–60. PMID: 25429713.

    Article  CAS  PubMed  Google Scholar 

  86. Fesmire J, Wolfson-Reichlin M, Reichlin M. Effects of autoimmune antibodies anti-lipoprotein lipase, anti-low density lipoprotein, and anti-oxidized low density lipoprotein on lipid metabolism and atherosclerosis in systemic lupus erythematosus. Rev Bras Reumatol. 2010;50:539–51. PMID: 21125190.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Carbone F, Nencioni A, Mach F, et al. Evidence on the pathogenic role of auto-antibodies in acute cardiovascular diseases. Thromb Haemost. 2013;109:854–68. PMID: 23446994.

    Article  CAS  PubMed  Google Scholar 

  88. Chen PM, Ohno M, Hiwasa T, et al. Nardilysin is a promising biomarker for the early diagnosis of acute coronary syndrome. Int J Cardiol. 2017;243:1–8. PMID: 28747015.

    Article  PubMed  Google Scholar 

  89. Kramer J, Harcos P, Prohászka Z, et al. Frequencies of certain complement protein alleles and serum levels of anti-heat-shock protein antibodies in cerebrovascular diseases. Stroke. 2000;31:2648–52. PMID: 11062289.

    Article  CAS  PubMed  Google Scholar 

  90. Palmer JP, Asplin CM, Clemons P, et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science. 1983;222:1337–9. PMID: 6362005.

    Article  CAS  PubMed  Google Scholar 

  91. Baekkeskov S, Aanstoot H, Christgau S, et al. Identification of the 64K autoantigen in insulin dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990;347:151–6. PMID: 1697648.

    Article  CAS  PubMed  Google Scholar 

  92. Payton MA, Hawkes CJ, Christie MR. Relationship of the 37,000- and 40,000-M(r) tryptic fragments of islet antigens in insulin-dependent diabetes to the protein tyrosine phosphatase-like molecule IA-2 (ICA512). J Clin Invest. 1995;96:1506–11. PMID: 7657822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Taplin CE, Barker JM. Autoantibodies in type 1 diabetes. Autoimmunity. 2008;41:11–8. PMID: 18176860.

    Article  CAS  PubMed  Google Scholar 

  94. Machida T, Kubota M, Kobayashi E, et al. Identification of stroke-associated-antigens via screening of recombinant proteins from the human expression cDNA library (SEREX). J Translat Med. 2015;13:71. PMID: 25890248.

    Article  CAS  Google Scholar 

  95. Goto K, Sugiyama T, Matsumura R, et al. Identification of cerebral infarction-specific antibody markers from autoantibodies detected in patients with systemic lupus erythematosus. J Mol Biomark Diagnos. 2015;6:2. https://doi.org/10.4172/2155-9929.1000219.

    Article  CAS  Google Scholar 

  96. Wang H, Zhang XM, Tomiyoshi G, et al. Association of serum levels of antibodies against MMP1, CBX1, and CBX5 with transient ischemic attack and cerebral infarction. Oncotarget. 2018;9:5600–13. PMID: 29464021.

    PubMed  Google Scholar 

  97. Yoshida Y, Wang H, Hiwasa T, et al. Elevation of autoantibody level against PDCD11 in patients with transient ischemic attack. Oncotarget. 2018;9:8836–48. PMID: 29507658.

    PubMed  Google Scholar 

  98. Hiwasa T, Zhan XM, Kimura R, et al. Association of serum antibody levels against TUBB2C with diabetes and cerebral infarction. Integ Biomed Sci. 2015;1:49–63. https://doi.org/10.18314/gjbs.v1i2.27.

    Article  Google Scholar 

  99. Sugimoto K, Tomiyoshi G, Mori M, et al. Identification of serum anti-GADD34 antibody as a common marker of diabetes mellitus and Parkinson disease. J Alzheim Dis Parkins. 2017;7:358. https://doi.org/10.4172/2161-0460.1000358.

    Article  Google Scholar 

  100. Hiwasa T, Zhang XM, Kimura R, et al. Elevated adiponectin antibody levels in sera of patients with atherosclerosis-related coronary artery disease, cerebral infarction, and diabetes mellitus. J Circ Biomark. 2016;5:8. https://doi.org/10.5772/63218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Matsumura T, Terada J, Kinoshita T, et al. Circulating anti-coatomer protein complex subunit epsilon (COPE) autoantibodies as a potential biomarker for cardio- and cerebro-vascular events in patients with obstructive sleep apnea. J Clin Sleep Med. 2017;13(3):393–400. PMID: 27923433.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Matsumura T, Terada J, Kinoshita T, et al. Autoantibody against NBL1 in obstructive sleep apnea patients with cardiovascular disease. PLoS One. 2018;13:e0195015. PMID: 29596467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Hiwasa T, Machida T, Zhang XM, et al. Elevated levels of autoantibodies against ATP2B4 and BMP-1 in sera of patients with atherosclerosis-related diseases. Immunome Res. 2015;11:097. https://doi.org/10.4172/1745–7580.1000097.

    Article  Google Scholar 

  104. Nakamura R, Tomiyoshi G, Shinmen N, et al. An anti-deoxyhypusine synthase antibody as a marker of atherosclerosis-related cerebral infarction, myocardial infarction, diabetes mellitus, and chronic kidney disease. SM Atheroscler J. 2017;1:1001. http://smjournals.com/atherosclerosis/in-press.php#x.

    Google Scholar 

  105. Hiwasa T, Tomiyoshi G, Nakamura R, et al. Serum SH3BP5-specific antibody level is a biomarker of atherosclerosis. Immunome Res. 2017;13:2. https://doi.org/10.4172/17457580.1000132.

    Article  Google Scholar 

  106. Zhang XM, Wang H, Mine S, et al. Association of serum anti-prolylcarboxypeptidase antibody marker with atherosclerotic diseases accompanied by hypertension. J Mol Biomark Diagn. 2017;8:361. https://doi.org/10.4172/2155-9929.1000361.

    Article  Google Scholar 

  107. Will JC, Galuska DA, Vinicor F, et al. Colorectal cancer: another complication of diabetes mellitus? Am J Epidemiol. 1998;147:816–25. PMID: 9583711.

    Article  CAS  PubMed  Google Scholar 

  108. Jarvandi S, Davidson NO, Schootman M. Increased risk of colorectal cancer in type 2 diabetes is independent of diet quality. PLoS One. 2013;8:e74616. PMID: 24069323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fujihara S, Kato K, Morishita A, et al. Antidiabetic drug metformin inhibits esophageal adenocarcinoma cell proliferation in vitro and in vivo. Int J Oncol. 2015;46:2172–80. PMID: 25709052.

    Article  CAS  PubMed  Google Scholar 

  110. Agmon Nardi I, Iakobishvili Z. Cardiovascular risk in cancer survivors. Curr Treat Options Cardiovasc Med. 2018;20:47. PMID: 29705862.

    Article  PubMed  Google Scholar 

  111. Berger NA. Young Adult Cancer: Influence of the Obesity Pandemic. Obesity (Silver Spring). 2018;26:641–50. PMID: 29570247.

    Article  PubMed Central  Google Scholar 

  112. Cafasso D, Schneider P. How paclitaxel can improve results in diabetics. J Cardiovasc Surg (Torino). 2012;53:13–21. PMID: 22231525.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaki Hiwasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hiwasa, T., Shimada, H. (2019). Autoantibody in Cancer. In: Shimada, H. (eds) Biomarkers in Cancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-13-7295-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7295-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7294-0

  • Online ISBN: 978-981-13-7295-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics