Skip to main content

Lactic Acid Bacteria and Bacteriocins

  • Chapter
  • First Online:
Lactic Acid Bacteria

Abstract

Bacteriocin is a kind of antibiotic substance produced by bacteria in the metabolic process and has the function of resisting bacteria, fungi, or viruses. The intrinsic nature of bacteriocin is protein or polypeptide. For producing strain, bacteriocin is a biological weapon as it can inhibit or kill competitors in complex or harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasiliasi S et al (2011) Effect of medium composition and culture condition on the production of bacteriocin-like inhibitory substances (blis) by lactobacillus paracasei la07, a strain isolated from BUDU. Biotechnol Biotechnol Equip 25(4):2652–2657

    Article  CAS  Google Scholar 

  • Anand SK, Srinivasan RA, Rao LK (1984) Antibacterial activity associated with Bifidobacterium bifidum. Cult Dairy Prod J 19:6–8

    Google Scholar 

  • Anderssen EL et al (1998) Antagonistic activity of lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin a. Appl Environ Microb 64(6):2269–2272

    CAS  Google Scholar 

  • Arakawa K et al (2009a) Effects of gassericins a and T, bacteriocins produced by lactobacillus gasseri, with glycine on custard cream preservation. J Dairy Sci 92(6):2365–2372

    Article  CAS  PubMed  Google Scholar 

  • Arakawa K et al (2009b) Negative effect of divalent metal cations on production of gassericin T, a bacteriocin produced by lactobacillus gasseri, in milk-based media. Int Dairy J 19(10):612–616

    Article  CAS  Google Scholar 

  • Aunpad R, Na-Bangchang K (2007) Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilus strain WAPB4. Curr Microbiol 55(4):308–313

    Article  CAS  PubMed  Google Scholar 

  • Aymerich T et al (1996) Biochemical and genetic characterization of enterocin a from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62(5):1676–1682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhunia AK et al (1991) Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J Appl Bacteriol 70(1):25–33

    Article  CAS  Google Scholar 

  • Brotz H et al (1997) The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem 246(1):193–199

    Article  CAS  PubMed  Google Scholar 

  • Casaus P et al (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin a. Microbiology-Uk 143:2287–2294

    Article  CAS  Google Scholar 

  • Chatterjee S et al (1992) Mersacidin, a new antibiotic from Bacillus fermentation, isolation, purification and chemical characterization. J Antibiot 45(6):832–838

    Article  CAS  Google Scholar 

  • Cheikhyoussef A et al (2010) Bifidin I–A new bacteriocin produced by Bifidobacterium infantis BCRC 14602: purification and partial amino acid sequence. Food Control 21(5):746–753

    Article  CAS  Google Scholar 

  • Cintas LM et al (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 182(23):6806–6814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collado MC, Hernandez M, Sanz Y (2005a) Production of bacteriocin-like inhibitory compounds by human fecal Bifidobacterium strains. J Food Prot 68(5):1034–1040

    Article  CAS  PubMed  Google Scholar 

  • Collado MC et al (2005b) Antimicrobial peptides are among the antagonistic metabolites produced by Bifidobacterium against helicobacter pylori. Int J Antimicrob Agents 25(5):385–391

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788

    Article  CAS  PubMed  Google Scholar 

  • Davies EA, Bevis HE, Delves–Broughton J (1997) The use of the bacteriocin, nisin, as a preservative in ricotta–type cheeses to control the food–borne pathogen Listeria monocytogenes. Lett Appl Microbiol 24(5):343–346

    Article  CAS  PubMed  Google Scholar 

  • de Arauz LJ et al (2012) Culture medium of diluted skimmed milk for the production of nisin in batch cultivations. Ann Microbiol 62(1):419–426

    Article  CAS  Google Scholar 

  • de Kwaadsteniet M, ten Doeschate K, Dicks LMT (2008) Characterization of the structural gene encoding Nisin F, a new lantibiotic produced by a Lactococcus lactis subsp lactis isolate from freshwater catfish (Clarias gariepinus). Appl Environ Microbiol 74(2):547–549

    Article  PubMed  CAS  Google Scholar 

  • Diep DB et al (1994) The gene encoding plantaricin a, a bacteriocin from lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol 60(1):160–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson AE, Sanozky-Dawes RB, Klaenhammer TR (2007) Identification of an operon and inducing peptide involved in the production of lactacin B by lactobacillus acidophilus. J Appl Microbiol 103(5):1766–1778

    Article  CAS  PubMed  Google Scholar 

  • Draper LA et al (2013) The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit gram negative bacteria. BMC Microbiol 13(1):1–8

    Article  CAS  Google Scholar 

  • Eijsink VGH et al (1998) Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64(9):3275–3281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espeche MC et al (2014) Physicochemical factors differentially affect the biomass and bacteriocin production by bovine Enterococcus mundtii CRL1656. J Dairy Sci 97(2):789–797

    Article  CAS  PubMed  Google Scholar 

  • Etchells JL et al (1964) Pure culture fermentation of brined cucumbers. Appl Microbiol 12(6):523–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fimland G et al (2005) Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci 11(11):688–696

    Article  CAS  PubMed  Google Scholar 

  • Flynn S et al (2002) Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium lactobacillus salivarius subsp salivarius UCC118. Microbiology-Sgm 148:973–984

    Article  CAS  Google Scholar 

  • Garneau S, Martin NI, Vederas JC (2002) Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84(5-6):577–592

    Article  CAS  PubMed  Google Scholar 

  • Gross E, Morell JL (1971) Structure of nisin. J Am Chem Soc 93(18):4634–4635

    Article  CAS  PubMed  Google Scholar 

  • Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC, Stiles ME (1991) Characterization of Leucocin A-UAL 187 and cloning of the Bacteriocin Cene from Leuconostoc gelidum. J Bacteriol 173(23):7491–7501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havarstein LS, Holo H, Nes IF (1994) The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. Microbiology-Uk 140:2383–2389

    Article  CAS  Google Scholar 

  • Heinrich P et al (1987) The molecular organization of the lysostaphin gene and its sequences repeated in tandem. Mol Gen Genet MGG 209(3):563–569

    Article  CAS  PubMed  Google Scholar 

  • Hindre T et al (2004) Regulation of lantibiotic lacticin 481 production at the transcriptional level by acid pH. FEMS Microbiol Lett 231(2):291–298

    Article  CAS  PubMed  Google Scholar 

  • Hoover DG, Steenson LR (2014) Bacteriocins of lactic acid bacteria. Academic Press, New York

    Google Scholar 

  • Hui FM, Zhou LX, Morrison DA (1995) Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin a secretion genes. Gene 153(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Huo, G. C. Research and application of lactic acid bacteria. 2007

    Google Scholar 

  • Jia SR (2009) Biological preservatives. China Light Industry Press, Beijing

    Google Scholar 

  • Joerger MC, Klaenhammer TR (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by lactobacillus helveticus 481. J Bacteriol 167(2):439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai Y et al (2009) DNA sequencing and homologous expression of a small peptide conferring immunity to Gassericin a, a circular Bacteriocin produced by lactobacillus gasseri LA39. Appl Environ Microbiol 75(5):1324–1330

    Article  CAS  PubMed  Google Scholar 

  • King BF, Biel ML, Wilkinson BJ (1980) Facile penetration of the Staphylococcus aureus capsule by lysostaphin. Infect Immun 29(3):892–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12(1-3):39–85

    Article  CAS  PubMed  Google Scholar 

  • Konisky J (1982) Colicins and other bacteriocins with established modes of action. Annu Rev Microbiol 36(1):125–144

    Article  CAS  PubMed  Google Scholar 

  • Kuipers OP et al (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Eur J Biochem 216(1):281–291

    Article  CAS  PubMed  Google Scholar 

  • Magnusson J, Schnürer J (2001) Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-Spectrum Proteinaceous antifungal compound. Appl Environ Microbiol 67(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisnierpatin S et al (1992) Inhibition of listeria-monocytogenes in camembert cheese made with a nisin-producing starter. Lait 72(3):249–263

    Article  CAS  Google Scholar 

  • Mandal V, Sen SK, Mandal NC (2010) Assessment of antibacterial activities of pediocin produced by Pediococcus acidilactici lab 5. J Food Saf 30(3):635–651

    CAS  Google Scholar 

  • Mandal V, Sen SK, Mandal NC (2011) Isolation and characterization of pediocin NV 5 producing Pediococcus acidilactici LAB 5 from vacuum-packed fermented meat product. Indian J Microbiol 51(1):22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marciset O et al (1997) Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J Biol Chem 272(22):14277–14284

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen G et al (2005) Characterization of a new bacteriocin operon in sakacin P-producing lactobacillus sakei, showing strong translational coupling between the bacteriocin and immunity genes. Appl Environ Microbiol 71(7):3565–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathys S, Meile L, Lacroix C (2009) Co-cultivation of a bacteriocin-producing mixed culture of Bifidobacterium thermophilum RBL67 and Pediococcus acidilactici UVA1 isolated from baby faeces. J Appl Microbiol 107(1):36–46

    Article  CAS  PubMed  Google Scholar 

  • Miescher S et al (2000) Propionicin SM1, a bacteriocin from Propionibacterium jensenii DF1: isolation and characterization of the protein and its gene. Syst Appl Microbiol 23(2):174–184

    Article  CAS  PubMed  Google Scholar 

  • Morgan SM et al (2005) Sequential actions of the two component peptides of the lantibiotic lacticin 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob Agents Chemother 49(7):2606–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortvedt CI et al (1991) Purification and amino-acid-sequence of lactocin-S, a bacteriocin produced by lactobacillus-sake-L45. Appl Environ Microbiol 57(6):1829–1834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulders JWM et al (1991) Identification and characterization of the Lantibiotic Nisin-Z, a natural Nisin variant. Eur J Biochem 201(3):581–584

    Article  CAS  PubMed  Google Scholar 

  • Müller E, Radler F (1993) Caseicin, a bacteriocin from Lactobacillus casei. Folia Microbiol 38(6):441–446

    Article  Google Scholar 

  • Muriana PM, Klaenhammer TR (1991) Purification and partial characterization of lactacin F, a bacteriocin produced by lactobacillus acidophilus 11088. Appl Environ Microbiol 57(1):114–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K et al (2013) Food preservative potential of gassericin A-containing concentrate prepared from cheese whey culture supernatant of lactobacillus gasseri LA39. Anim Sci J 84(2):144–149

    Article  CAS  PubMed  Google Scholar 

  • Nes IF et al (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70(2-4):113–128

    Article  CAS  PubMed  Google Scholar 

  • Neumann VC et al (1993) Extracellular proteolytic activation of bacteriolytic peptidoglycan hydrolases of Staphylococcus simulans biovar staphylolyticus. FEMS Microbiol Lett 110(2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Nilsen T, Nes IF, Holo H (2003) Enterolysin a, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol 69(5):2975–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paik SH, Chakicherla A, Hansen JN (1998) Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273(36):23134–23142

    Article  CAS  PubMed  Google Scholar 

  • Parente E, Ricciardi A (1994) Influence of pH on the production of enterocin 1146 during batch fermentation. Lett Appl Microbiol 19(1):12–15

    Article  CAS  PubMed  Google Scholar 

  • Rayman MK, Aris B, Hurst A (1981) Nisin: a possible alternative or adjunct to nitrite in the preservation of meats. Appl Environ Microbiol 41(2):375–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rayman K, Malik N, Hurst A (1983) Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system. Appl Environ Microbiol 46(6):1450–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves P (2012) The bacteriocins, vol 11. Springer, New York

    Google Scholar 

  • Riley MA, Chavan MA (2007a) Bacteriocins. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Riley MA, Chavan MA (2007b) Bacteriocins: ecology and evolution. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Rodriguez JM, Martinez MI, Kok J (2002) Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr 42(2):91–121

    Article  CAS  PubMed  Google Scholar 

  • Rueckert PW et al (1979) Mammalian and microbial cell-free conversion of anthracycline antibiotics and analogs. J Antibiot 32(2):141–147

    Article  CAS  Google Scholar 

  • Schneider TR et al (2000) Ab initio structure determination of the lantibiotic mersacidin. Acta Crystallograph Sect D-Biol Crystallograph 56:705–713

    Article  CAS  Google Scholar 

  • Tanner SA et al (2014) Synergistic effects of Bifidobacterium thermophilum RBL67 and selected prebiotics on inhibition of Salmonella colonization in the swine proximal colon PolyFermS model. Gut Pathog 6(1):44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tolonen M et al (2004) Formation of nisin, plant-derived biomolecules and antimicrobial activity in starter culture fermentations of sauerkraut. Food Microbiol 21(2):167–179

    Article  CAS  Google Scholar 

  • Twomey D et al (2002) Lantibiotics produced by lactic acid bacteria: structure, function and applications. Anton Leeuw Int J Gen Mol Microbiol 82(1-4):165–185

    Article  CAS  Google Scholar 

  • Tyne DV, Martin MJ, Gilmore MS (2013) Structure, function, and biology of the Enterococcus faecalis Cytolysin. Toxins 5(5):895–911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upreti GC, Hinsdill RD (1975) Production and mode of action of lactocin 27: bacteriocin from a homofermentative lactobacillus. Antimicrob Agents Chemother 7(2):139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Hooven HW et al (1996) Surface location and orientation of the lantibiotic nisin bound to membrane-mimicking micelles of dodecylphosphocholine and of sodium dodecylsulphate. Eur J Biochem 235(1–2):394–403

    Article  Google Scholar 

  • Venema K et al (1995) Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1. 0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17(3):515–522

    Article  CAS  PubMed  Google Scholar 

  • Whitford MF et al (2001) Identification of bacteriocin-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255. App Environ Microbiol 67(2):569–574

    Article  CAS  Google Scholar 

  • Wirawan RE et al (2006) Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl Environ Microbiol 72(2):1148–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim Z, Johnson MG (1998) Characterization and antimicrobial spectrum of bifidocin B, a bacteriocin produced by Bifidobacterium bifidum NCFB 1454. J Food Prot 61(1):47–51

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa H, Kuramitsu HK (2005) Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob Agents Chemother 49(2):541–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zendo T et al (2003) Identification of the lantibiotic Nisin Q, a new natural nisin variant produced by Lactococcus lactis 61-14 isolated from a river in Japan. Biosci Biotechnol Biochem 67(7):1616–1619

    Article  CAS  PubMed  Google Scholar 

  • Zihler A et al (2011) Protective effect of probiotics on Salmonella infectivity assessed with combined in vitro gut fermentation-cellular models. BMC Microbiol 11:264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuxiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Q. (2019). Lactic Acid Bacteria and Bacteriocins. In: Chen, W. (eds) Lactic Acid Bacteria. Springer, Singapore. https://doi.org/10.1007/978-981-13-7283-4_4

Download citation

Publish with us

Policies and ethics