Skip to main content

Sepsis and Sepsis-Associated Encephalopathy: Its Pathophysiology from Bench to Bed

  • Chapter
  • First Online:
Neurocritical Care
  • 1144 Accesses

Abstract

Sepsis-associated encephalopathy (SAE) is characterized by diffuse cerebral dysfunction caused by a systemic inflammatory response to infection. SAE can be reversible after recovery from sepsis or can result in long-term cognitive impairments. SAE has a detrimental effect on the prognosis of septic patients. Although the exact pathophysiology of SAE remains unknown, several mechanisms have been proposed in animal and clinical studies. Animal studies suggest that neuroinflammation, oxidative stress, blood–brain barrier (BBB) disruption, impairment of cerebrovascular autoregulation, alteration of neurotransmission, mitochondrial dysfunction, and neuronal apoptosis are involved in the pathophysiology of SAE, whereas clinical studies suggest neuroinflammation, BBB disruption, oxidative stress in the brain, impairment of cerebrovascular autoregulation, and alteration of neurotransmission as underlying mechanisms. Systemic insults such as other organ dysfunction and metabolic abnormalities may also play a role in the pathophysiology of SAE, as suggested by a retrospective analysis of a large prospective multicenter database. However, there is a discrepancy in the hypothesized pathophysiology of SAE between animal and clinical studies. This discrepancy may stem from differences in the diagnosis of SAE between animals and humans. Clinically, the diagnosis of SAE is based on symptoms, whereas changes in mental status are difficult to detect in animals. Further research is necessary to clarify the pathophysiology of SAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bone RC, Balk RA, Cerra FB, et al. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20(6):864–74.

    Article  Google Scholar 

  2. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  Google Scholar 

  3. Pandharipande P, Cotton BA, Shintani A, et al. Motoric subtypes of delirium in mechanically ventilated surgical and trauma intensive care unit patients. Intensive Care Med. 2007;33:1726–31.

    Article  Google Scholar 

  4. Tsuruta R, Oda Y. A clinical perspective of sepsis-associated delirium. J Intensive Care. 2016;4:18.

    Article  Google Scholar 

  5. Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol. 2012;8(10):557–66.

    Article  CAS  Google Scholar 

  6. Barichello T, Fortunato JJ, Vitali AM, Feier G, Reinke A, Moreira JC, et al. Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med. 2006;34(3):886–9.

    Article  Google Scholar 

  7. Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, Shintani AK, Thompson JL, Jackson JC, Deppen SA, Stiles RA, Dittus RS, Bernard GR, Ely EW. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298:2644–53.

    Article  CAS  Google Scholar 

  8. Iacobone E, Bailly-Salin J, Polito A, et al. Sepsis-associated encephalopathy and its differential diagnosis. Crit Care Med. 2009;37:S331–6.

    Article  Google Scholar 

  9. Flierl MA, Rittirsch D, Huber-Lang MS, Stahel PF. Pathophysiology of septic encephalopathy – an unsolved puzzle. Crit Care. 2010;14:165.

    Article  Google Scholar 

  10. Zhang QH, Sheng ZY, Yao YM. Septic encephalopathy: when cytokines interact with acetylcholine in the brain. Mil Med Res. 2014;1:20.

    Article  Google Scholar 

  11. Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation. 2015;12:114.

    Article  Google Scholar 

  12. Ebersoldt M, Sharshar T, Annane D. Sepsis-associated delirium. Intensive Care Med. 2007;33:941–50.

    Article  Google Scholar 

  13. Tsuruta R, Nakahara T, Miyauchi T, Kutsuna S, Ogino Y, Yamamoto T, Kaneko T, Kawamura Y, Kasaoka S, Maekawa T. Prevalence and associated factors for delirium in critically ill patients at a Japanese intensive care unit. Gen Hosp Psychiatry. 2010;32:607–11.

    Article  Google Scholar 

  14. Sprung CL, Peduzzi PN, Shatney CH, Schein RM, Wilson MF, Sheagren JN, Hinshaw LB. Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit Care Med. 1990;18:801–6.

    Article  CAS  Google Scholar 

  15. Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG, Vasilevskis EE, Shintani AK, Moons KG, Geevarghese SK, Canonico A, Hopkins RO, Bernard GR, Dittus RS, Ely EW, for the BRAIN-ICU Study Investigators. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369:1306–16.

    Article  CAS  Google Scholar 

  16. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304:1787–94.

    Article  CAS  Google Scholar 

  17. Alexander JJ, Jacob A, Cunningham P, Hensley L, Quigg RJ. TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochem Int. 2008;52:447–56.

    Article  CAS  Google Scholar 

  18. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55:453–62.

    Article  Google Scholar 

  19. Bozza FA, D’Avila JC, Ritter C, Sonneville R, Sharshar T, Dal-Pizzol F. Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy. Shock. 2013;39:10–6.

    Article  CAS  Google Scholar 

  20. Ninković M, Malicević I, Jelenković A, Jovanović DM, Dukić M, Vasiljević I. Oxidative stress in the rats brain capillaries in sepsis—the influence of 7-nitroindazole. Acta Physiol Hung. 2006;93:315–23.

    Article  Google Scholar 

  21. Barichello T, Fortunato JJ, Vitali AM, Feier G, Reinke A, Moreira JC, Quevedo J, Dal-Pizzol F. Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med. 2006;34:886–9.

    Article  Google Scholar 

  22. Yokoo H, Chiba S, Tomita K, Takashina M, Sagara H, Yagisita S, Takano Y, Hattori Y. Neurodegenerative evidence in mice brains with cecal ligation and puncture-induced sepsis: preventive effect of the free radical scavenger edaravone. PLoS One. 2012;7:e51539.

    Article  CAS  Google Scholar 

  23. Descamps L, Coisne C, Dehouck B, Cecchelli R, Torpier G. Protective effect of glial cells against lipopolysaccharide-mediated blood-brain barrier injury. Glia. 2003;42:46–58.

    Article  Google Scholar 

  24. Handa O, Stephen J, Cepinskas G. Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis. Am J Physiol Heart Circ Physiol. 2008;295:H1712–9.

    Article  CAS  Google Scholar 

  25. Papadopoulos MC, Lamb FJ, Moss RF, Davies DC, Tighe D, Bennett ED. Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci (Lond). 1999;96:461–6.

    Article  CAS  Google Scholar 

  26. Brooks HF, Moss RF, Davies NA, Jalan R, Davies DC. Caecal ligation and puncture induced sepsis in the rat results in increased brain water content and perimicrovessel oedema. Metab Brain Dis. 2014;29:837–43.

    Article  Google Scholar 

  27. Rosengarten B. Autoregulative function in the brain in an endotoxic rat shock model. Inflamm Res. 2008;57:542–6.

    Article  CAS  Google Scholar 

  28. Pedersen M. The effect of S. pneumoniae bacteremia on cerebral blood flow autoregulation in rats. J Cereb Blood Flow Metab. 2008;28:126–34.

    Article  CAS  Google Scholar 

  29. Kadoi Y, Saito S. An alteration in the gamma-aminobutyric acid receptor system in experimentally induced septic shock in rats. Crit Care Med. 1996;24:298–305.

    Article  CAS  Google Scholar 

  30. Kadoi Y, Saito S, Kunimoto F, Imai T, Fujita T. Impairment of the brain beta-adrenergic system during experimental endotoxemia. J Surg Res. 1996;61:496–502.

    Article  CAS  Google Scholar 

  31. Winder TR, Minuk GY, Sargeant EJ, Seland TP. Gamma-aminobutyric acid (GABA) and sepsis-related encephalopathy. Can J Neurol Sci. 1988;15:23–5.

    Article  CAS  Google Scholar 

  32. Pavlov VA, Ochani M, Gallowitsch-Puerta M, Ochani K, Huston JM, Czura CJ, Al-Abed Y, Tracey KJ. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci U S A. 2006;103:5219–23.

    Article  CAS  Google Scholar 

  33. Dunn AJ. Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. J Pharmacol Exp Ther. 1992;261:964–9.

    CAS  Google Scholar 

  34. Semmler A, Frisch C, Debeir T, Ramanathan M, Okulla T, Klockgether T, Heneka MT. Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol. 2007;204:733–40.

    Article  Google Scholar 

  35. Silverman HA, Dancho M, Regnier-Golanov A, Nasim M, Ochani M, Olofsson PS, Ahmed M, Miller EJ, Chavan SS, Golanov E, Metz CN, Tracey KJ, Pavlov VA. Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation. Mol Med. 2015;20:601–11.

    Article  Google Scholar 

  36. Exline MC, Crouser ED. Mitochondrial mechanisms of sepsis-induced organ failure. Front Biosci. 2008;13:5030–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Comim CM, Rezin GT, Scaini G, Di-Pietro PB, Cardoso MR, Petronilho FC, Ritter C, Streck EL, Quevedo J, Dal-Pizzol F. Mitochondrial respiratory chain and creatine kinase activities in rat brain after sepsis induced by cecal ligation and perforation. Mitochondrion. 2008;8:313–8.

    Article  CAS  Google Scholar 

  38. D’Avila JC, Santiago AP, Amâncio RT, Galina A, Oliveira MF, Bozza FA. Sepsis induces brain mitochondrial dysfunction. Crit Care Med. 2008;36:1925–32.

    Article  Google Scholar 

  39. Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT. Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat. 2005;30:144–57.

    Article  CAS  Google Scholar 

  40. Matsuoka Y, Kitamura Y, Takahashi H, et al. Interferon-gamma plus lipopolysaccharide induction of delayed neuronal apoptosis in rat hippocampus. Neurochem Int. 1999;34:91–9.

    Article  CAS  Google Scholar 

  41. Messaris E, Memos N, Chatzigianni E, Konstadoulakis MM, Menenakos E, Katsaragakis S, Voumvourakis C, Androulakis G. Time-dependent mitochondrial-mediated programmed neuronal cell death prolongs survival in sepsis. Crit Care Med. 2004;32:1764–70.

    Article  Google Scholar 

  42. Berg RM, Moller K, Bailey DM. Neuro-oxidative-nitrosative stress in sepsis. J Cereb Blood Flow Metab. 2011;31:1532–44.

    Article  CAS  Google Scholar 

  43. Serantes R, Arnalich F, Figueroa M, Salinas M, Andrés-Mateos E, Codoceo R, Renart J, Matute C, Cavada C, Cuadrado A, Montiel C. Interleukin-1beta enhances GABAA receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway: relevance to sepsis-associated encephalopathy. J Biol Chem. 2006;281:14632–43.

    Article  CAS  Google Scholar 

  44. Cojocaru IM, Muşuroi C, Iacob S, Cojocaru M. Investigation of TNF-alpha, IL-6, IL-8 and of procalcitonin in patients with neurologic complications in sepsis. Rom J Intern Med. 2003;41:83–93.

    CAS  PubMed  Google Scholar 

  45. Sharshar T, Carlier R, Bernard F, Guidoux C, Brouland JP, Nardi O, de la Grandmaison GL, Aboab J, Gray F, Menon D, Annane D. Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med. 2007;33:798–806.

    Article  Google Scholar 

  46. Voigt K, Kontush A, Stuerenburg HJ, et al. Decreased plasma and cerebrospinal fluid ascorbate levels in patients with septic encephalopathy. Free Radic Res. 2002;36:735–9.

    Article  CAS  Google Scholar 

  47. Pfister D, Siegemund M, Dell-Kuster S, Smielewski P, Rüegg S, Strebel SP, Marsch SC, Pargger H, Steiner LA. Cerebral perfusion in sepsis-associated delirium. Crit Care. 2008;12:R63.

    Article  Google Scholar 

  48. Schramm P, Klein KU, Falkenberg L, Berres M, Closhen D, Werhahn KJ, David M, Werner C, Engelhard K. Impaired cerebrovascular autoregulation in patients with severe sepsis and sepsis-associated delirium. Crit Care. 2012;16:R181.

    Article  Google Scholar 

  49. Ofek K, Krabbe KS, Evron T, Debecco M, Nielsen AR, Brunnsgaad H, Yirmiya R, Soreq H, Pedersen BK. Cholinergic status modulations in human volunteers under acute inflammation. J Mol Med (Berl). 2007;85:1239–51.

    Article  CAS  Google Scholar 

  50. Pandharipande PP, Sanders RD, Girard TD, et al. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14:R38.

    Article  Google Scholar 

  51. Sonneville R, de Montmollin E, Poujade J, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med. 2017;43:1075–84.

    Article  Google Scholar 

  52. Barr J, Fraser GL, Puntillo K, Ely EW, Gélinas C, Dasta JF, Davidson JE, Devlin JW, Kress JP, Joffe AM, Coursin DB, Herr DL, Tung A, Robinson BRH, Fontaine DK, Ramsay MA, Riker RR, Sessler CN, Pun B, Skrobik Y, Jaeschke R. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41:263–306.

    Article  Google Scholar 

  53. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, Speroff T, Gautam S, Bernard GR, Inouye SK. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit Care Med. 2001;29:1370–9.

    Article  CAS  Google Scholar 

  54. Bergeron N, Dubois M-J, Dumont M, Dial S, Skrobik Y. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27:859–64.

    Article  CAS  Google Scholar 

  55. Committee for the development of Japanese guidelines for the management of Pain, Agitation, and Delirium in intensive care unit, Japanese Society of Intensive Care Medicine. Japanese guidelines for the management of Pain, Agitation, and Delirium in intensive care unit (J-PAD). J Jpn Soc Intensive Care Med. 2014;21:539–79.

    Article  Google Scholar 

  56. Pandharipande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104:21–6.

    Article  CAS  Google Scholar 

  57. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomized controlled trial. Lancet. 2009;373:1874–82.

    Article  Google Scholar 

  58. Kafa IM, Bakirci S, Uysal M, Kurt MA. Alterations in the brain electrical activity in a rat model of sepsis-associated encephalopathy. Brain Res. 2010;1354:217–26.

    Article  CAS  Google Scholar 

  59. Lin LC, Chen YY, Lee WT, Chen HL, Yang RC. Heat shock pretreatment attenuates sepsis-associated encephalopathy in LPS-induced septic rats. Brain Dev. 2010;32:371–7.

    Article  Google Scholar 

  60. Kafa IM, Uysal M, Bakirci S, Ayberk Kurt M. Sepsis induces apoptotic cell death in different regions of the brain in a rat model of sepsis. Acta Neurobiol Exp (Wars). 2010;70:246–60.

    Google Scholar 

  61. Semmler A, Hermann S, Mormann F, Weberpals M, Paxian SA, Okulla T, Schäfers M, Kummer MP, Klockgether T, Heneka MT. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation. 2008;5:38.

    Article  Google Scholar 

  62. Soejima Y, Fujii Y, Ishikawa T, Takeshita H, Maekawa T. Local cerebral glucos utilization in septic rats. Crit Care Med. 1990;18:423–7.

    Article  CAS  Google Scholar 

  63. Kadoi Y, Goto F. Selective inducible nitric oxide inhibition can restore hemodynamics, but does not improve neurological dysfunction in experimentally-induced septic shock in rats. Anesth Analg. 2004;99:212–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoki Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujita, M., Tsuruta, R. (2019). Sepsis and Sepsis-Associated Encephalopathy: Its Pathophysiology from Bench to Bed. In: Kinoshita, K. (eds) Neurocritical Care . Springer, Singapore. https://doi.org/10.1007/978-981-13-7272-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7272-8_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7271-1

  • Online ISBN: 978-981-13-7272-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics