Skip to main content

Methods for Identification of Endolichenic Fungi

  • Chapter
  • First Online:
  • 370 Accesses

Abstract

Various estimates about the fungal diversity suggest that there is an immense diversity of fungi which is yet to be discovered. To report the correct number of fungal diversity, first one has to isolate and identify them correctly from their host/substrate. To identify the fungi there are different ways available i.e. with the help of morphological features, through biochemical means, anatomical features and the latest one in vogue is the molecular characterization. All the techniques are very helpful to identify the fungi and different researchers use different methods for identification according to the facility available at their host institute or outsource the facility which is needed by them and not available at their institute. In this chapter we have tried to mention all the different methods used for the identification of endolichenic fungi.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507

    Article  Google Scholar 

  • Atkins SD, Clark IM, Sosnowska D et al (2003) Detection and quantification of Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, real-time PCR, selective media and baiting. Appl Environ Microbiol 69:4788–4793

    Article  CAS  Google Scholar 

  • Atkins SD, Clark IM, Pande S et al (2004) The use of real-time PCR and species specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol Ecol 51:257–264

    Article  Google Scholar 

  • Bates JA, Taylor EJA, Kenyon DM et al (2001) The application of real-time PCR to the identification, detection and quantification of Pyrenophora species in barley seed. Mol Plant Pathol 2:49–57

    Article  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1992a) Convergence in ascospore discharge mechanism among pyrenomycetous fungi based on 18S ribosomal RNA gene sequence. Mol Phylogenet Evol 1:59–71

    Article  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1992b) Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequence. Mol Biol Evol 9:278–284

    CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98(3):426–438

    Article  Google Scholar 

  • Blaxter M (2003) Counting angels with DNA. Nature 421:122–124

    Article  CAS  Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22:525–564

    Article  Google Scholar 

  • Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210–220

    Article  Google Scholar 

  • Carbone I, Kohn LM (1993) Ribosomal DNA sequence divergence within internal transcribed spacer 1 of the Sclerotiniaceae. Mycologia 85:415–427

    Article  CAS  Google Scholar 

  • Craig DW, Pearson JV, Szelinger S et al (2008) Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods 5:887–893

    Article  CAS  Google Scholar 

  • Cubero OF, Crespo A, Fathi J et al (1999) DNA extraction and PCR amplifcation method suitable for fresh, herbarium-stored, lichenized and other fungi. Plant Syst Evol 216:243–249

    Article  CAS  Google Scholar 

  • De Jong EZ, Guthridge KM, Spangenberg GC et al (2003) Development and characterization of EST-derived simple sequence repeat (SSR) markers for pasture grass endophytes. Genome 46:277–290

    Article  Google Scholar 

  • Duong LM, Jeewon R, Lumyong S et al (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  • Espinosa-Garcia FJ, Langenheim JH (1990) The leaf fungal endophytic community of a coastal redwood population diversity and spatial patterns. New Phytol 116:89–97

    Article  Google Scholar 

  • Fisher PJ, Petrini O, Sutton BC (1993) A comparative study of fungal endophytes in leaves, xylem and bark of Eucalyptus nitens in Australia and England. Sydowia 45:338–345

    Google Scholar 

  • Frisvad JC (1981) Physiological criteria and mycotoxin production as aids in identification of common asymmetric penicillia. Appl Environ Microbiol 41:568–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gernandt DS, Camacho FJ, Stone JK (1997) Meria laricis, an anamorph of Rhabdocline. Mycologia 89:735–744

    Article  Google Scholar 

  • Groppe K, Boller T (1997) PCR assay based on a microsatellite-containing locus for detection and quantification of Epichloë endophytes in grass tissue. Appl Environ Microbiol 63:1543–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groppe K, Sanders I, Wiemken A et al (1995) A microsatellite marker for studying the ecology and diversity of fungal endophytes (Epichloë spp.) in grasses. Appl Environ Microbiol 61:3943–3949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grünig CR, Sieber TN, Holdenrieder O (2001) Characterisation of dark septate endophytic fungi (DSE) using inter-simple-sequence-repeat-anchored polymerase chain reaction (ISSR-PCR) amplification. Mycol Res 105:24–32

    Article  Google Scholar 

  • Grünig CR, Sieber TN, Rogers SO et al (2002) Spatial distribution of dark septate endophytes in a confined forest plot. Mycol Res 106:832–840

    Article  Google Scholar 

  • Grünig CR, McDonald BA, Sieber TN et al (2004) Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species. Fungal Genet Biol 41:676–687

    Article  Google Scholar 

  • Grünig CR, Duò A, Sieber TN (2006) Population genetic analysis of Phialocephala fortinii s.l. and Acephala applanata in two undisturbed forests in Switzerland and evidence for new cryptic species. Fungal Genet Biol 43:410–421

    Article  Google Scholar 

  • Grünig CR, Brunner PC, Duò A et al (2007) Suitability of methods for species recognition in the Phialocephala fortinii-Acephala applanata species complex using DNA analysis. Fungal Genet Biol 44:773–788

    Article  Google Scholar 

  • Grünig CR, Duò A, Sieber TN, Holdenrieder O (2008) Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.l.-Acephala applanata species complex. Mycologia 100:47–67

    Article  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (1998) A method to promote sporulation in palm endophytic fungi. Fungal Divers 1:109–113

    Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000a) Identification of endophytic fungi from Livistona chinensis (Palmae) using morphological and molecular techniques. New Phytol 147:617–630

    Article  CAS  Google Scholar 

  • Guo LD, Hyde KD, Liew CY (2000b) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147:617–630

    Article  CAS  Google Scholar 

  • Guo LD, Huang GR, Wang Y et al (2003) Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis. Mycol Res 107:680–688

    Article  CAS  Google Scholar 

  • Guo LD, Huang GR, Wang Y (2008) Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in Dongling Mountain, Beijing. J Integr Plant Biol 50:997–1003

    Article  Google Scholar 

  • Hajibabaei M, Janzen DH, Burns JM et al (2006) DNA barcodes distinguish species of tropical Lepidoptera. PNAS 103:968–971

    Article  Google Scholar 

  • Harris JL (2000) Safe, low-distortion tape touch method for fungal slide mounts. J Clin Microbiol 38:4683–4684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawksworth DL (1988) Identification. In: Hawksworth DL, Kirsop BE (eds) Living resources for biotechnology: filamentous fungi. Cambridge University Press, Cambridge, pp 100–114

    Chapter  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B 270(Suppl):96–99

    Google Scholar 

  • Hennebert GL, Weresub LK (1977) Terms for states and forms of fungi, their names and types. Mycotaxon 6:207–211

    Google Scholar 

  • Johnson JA, Whitney NJ (1992) Isolation of fungal endophytes from black spruce (Picea mariana) dormant buds and needles from New Brunswick. Can J Bot 70:1754–1757

    Article  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW et al (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford

    Google Scholar 

  • Kuhls K, Lieckfeldt E, Samuels GJ et al (1996) Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci USA 93:7755–7760

    Article  CAS  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2002) Endophytic assemblages in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:91–91

    Google Scholar 

  • Lacap DC, Hyde KD, Liew ECY (2003) An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers 12:53–66

    Google Scholar 

  • Lee SC, Corradi N, Doan S et al (2010) Evolution of the sex-related locus and genomic features shared in microsporidia and Fungi. PLoS One 5:e10539. https://doi.org/10.1371/journal.pone.0010539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LoBuglio KF, Pitt JI, Taylor JW (1993) Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85:592–604

    Article  CAS  Google Scholar 

  • McCutcheon TL, Carroll GC (1993) Genotypic diversity in populations of a fungal endophyte from Douglas fir. Mycologia 85:180–186

    Article  Google Scholar 

  • Monreal M, Berch SM, Berbee M (1999) Molecular diversity of ericoid mycorrhizal fungi. Can J Bot 77:1580–1594

    Article  CAS  Google Scholar 

  • O’ Brien BL, Parrent JL, Jackson JA et al (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  Google Scholar 

  • Paterson RRM (1986) Standardized one- and two-dimensional thin layer chromatographic methods for the identification of secondary metabolites in Penicillium and other fungi. J Chromatogr 368:249–264

    Article  CAS  Google Scholar 

  • Petrini O, Stone J, Carroll FE (1982) Endophytic fungi in evergreen shrubs in western Oregon: a preliminary study. Can J Bot 60:789–796

    Article  Google Scholar 

  • Photita W, Lumyong S, Lumyong P et al (2001) Endophytic fungi of wild banana (Musa acuminata) at doi Suthep Pui National Park, Thailand. Mycol Res 105:1508–1513

    Article  Google Scholar 

  • Ranjard L, Poly F, Nazaret S (2000) Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res Microbiol 151:167–177

    Article  CAS  Google Scholar 

  • Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634

    Article  CAS  Google Scholar 

  • Savolainen V, Cowan RS, Vogler AP et al (2005) Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philos Trans R Soc B 360:1805–1811

    Article  CAS  Google Scholar 

  • Seifert KA, Samson RA, de Waard JR et al (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. PNAS 104:3901–3906

    Article  CAS  Google Scholar 

  • Smith MA, Fisher BL, Hebert PDN (2005) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos Trans R Soc B 360:1825–1834

    Article  CAS  Google Scholar 

  • Sun JQ, Guo LD, Zang W et al (2008) Diversity and ecological distribution ofendophytic fungi associated with medicinal plants. Sci China Ser C Life Sci 51:751–759

    Article  Google Scholar 

  • Swann EC, Taylor JW (1993) Higher taxa of Basidiomycetes: an 18S rRNA gene perspective. Mycologia 85:923–936

    Article  CAS  Google Scholar 

  • Swann EC, Taylor JW (1995a) Phylogenetic perspectives on basidiomycete systematics: evidence from the 18S rRNA gene. Can J Bot 73(Suppl 1):S862–S868

    Article  CAS  Google Scholar 

  • Swann EC, Taylor JW (1995b) Toward a phylogenetic systematics of the Basidiomycota: integrating yeast and filamentous basidiomycetes using 18S rRNA gene sequences. Stud Mycol 38:147–161

    Google Scholar 

  • Swann EC, Taylor JW (1995c) Phylogenetic diversity of yeast-producing basidiomycetes. Mycol Res 99:1205–1210

    Article  Google Scholar 

  • Taylor JE, Hyde KD, Jones EBG (1999) Endophytic fungi associated with the temperate palm, Trachycarpus fortunei, within and outside its natural geographic range. New Phytol 142:335–346

    Article  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM et al (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490

    Article  CAS  Google Scholar 

  • Wang Y, Guo LD (2007) A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Can J Bot 85:911–917

    Article  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH et al (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc B 360:1847–1857

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ et al (eds) PCR protocols, a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Zambino PJ, Szabo LJ (1993) Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis. Mycologia 85:401–414

    Article  CAS  Google Scholar 

  • Zhang N, Castlebury LA, Miller AN et al (2006) An overview of the systematic of sordariomycetes based on four-gene phylogeny. Mycologia 98:1076–1087

    Article  CAS  Google Scholar 

  • Zhang T, Wei XL, Zhang YQ et al (2015) Diversity and distribution of lichen associated fungi in the Ny-Ålesund region (Svalbard, high Arctic) as revealed by 454 pyrosequencing. Sci Rep 5:14850

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, M., Joshi, Y. (2019). Methods for Identification of Endolichenic Fungi. In: Endolichenic Fungi: Present and Future Trends . Springer, Singapore. https://doi.org/10.1007/978-981-13-7268-1_4

Download citation

Publish with us

Policies and ethics