Skip to main content

Plant Latex: A Rich Source of Haemostatic Proteases

  • Chapter
  • First Online:
Herbal Medicine in India

Abstract

Chronic wounds are key concern equally for the patient, and clinician since it seriously reduces the quality of life. Existing Global estimates indicate that almost six million people suffer from chronic injuries including India. Despite remarkable developments in the pharmaceutical drug industry, the availability of drugs capable of stimulating the process of wound repair is still limited. Besides the conventional systems of Indian Medicine, the folk and tribal medicine employ a number of plants for treatment of cuts, wounds and burns. Some of these plants have been screened scientifically for the evaluation of their wound healing activity both in vitro and in vivo in different pharmacological models. However, the potential of most of the plants remains unexplored. Haemostasis through blood coagulation and subsequent fibrinolysis is the initial event of wound healing, which is a multi-step process. Plant latex is a rich source of several hydrolytic enzymes which are responsible for their diverse health applications. Many latex proteases have been explored to validate their potential haemostatic/wound healing potentials. The present chapter will focus on recent advances in the field of plant latex biology, the presence of different proteases, their role in haemostasis and related molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham KI, Joshi PN. Studies on proteinases from Calotropis gigantea latex: purification and some properties of two proteinases containing carbohydrate. Biochim Biophys Acta. 1979;568:111–9.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA, Konno K. Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst. 2009;40(1):311–31.

    Article  Google Scholar 

  • Anusha R, Singh MK, Bindhu O. Characterisation of potential milk coagulants from Calotropis gigantea plant parts and their hydrolytic pattern of bovine casein. Eur Food Res Technol. 2014;238(6):997–1006.

    Article  CAS  Google Scholar 

  • Arun M, Satish S, Anima P. Herbal boon for wounds. Wounds. 2013;6(7):8.

    Google Scholar 

  • Ashwani K, editor. Ayurvedic medicines: some potential plants for medicine from India. a meeting of the international forum on traditional medicines. Toyama, Japan: Toyama Medical and Pharmaceutical University; 1999.

    Google Scholar 

  • Badgujar SB. Evaluation of hemostatic activity of latex from three Euphorbiaceae species. J Ethnopharmacol. 2014;151(1):733–9.

    Article  PubMed  Google Scholar 

  • Badgujar SB, Mahajan RT. Characterization of thermo- and detergent stable antigenic glycosylated cysteine protease of Euphorbia nivulia Buch.-Ham. and evaluation of its ecofriendly applications. Sci World J. 2013;2013:716545.

    Article  CAS  Google Scholar 

  • Baidamshina DR, Trizna EY, Holyavka MG, Bogachev MI, Artyukhov VG, Akhatova FS, et al. Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci Rep. 2017;7:46068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett AJ. Classification of peptidases: proteolytic enzymes: serine and cysteine peptidases. Methods Enzymol. 1994;244:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Barrett AJ. Proteolytic enzymes: aspartic and metallo peptidases. Cambridge, MA: Academic Press; 1995.

    Google Scholar 

  • Barrett AJ, Woessner JF, Rawlings ND. Handbook of proteolytic enzymes. Amsterdam: Elsevier; 2012.

    Google Scholar 

  • Begum D, Nath SC. Ethnobotanical review of medicinal plants used for skin diseases and related problems in Northeastern India. J Herbs Spices Med Plants. 2000;7(3):55–93.

    Article  Google Scholar 

  • Bindhu OS, Singh MK. Hemostatic, milk clotting and blood stain removal potential of cysteine proteases from Calotropis gigantea (L.) R. Br. Latex. Pharmacogn Mag. 2014;10(Suppl 2):S350.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas TK, Mukherjee B. Plant medicines of Indian origin for wound healing activity: a review. Int J Low Extrem Wounds. 2003;2(1):25–39.

    Article  PubMed  Google Scholar 

  • Bolay E. Feigenund wurgefeigen. Pharm Unserer Zeit. 1979;4:97–112.

    Google Scholar 

  • Clark R. Wound repair: overview and general con- 17. Becker, DL, McGonnell, I, Makarenkova, H, Patel, K, Tickle, sideration In The Molecular and Cellular Biology of Wound Re- C, Lorimer, J, and Green, CR (1999) Roles for alpha. 1996;1:3–50.

    Google Scholar 

  • Devaraj KB, Gowda LR, Prakash V. An unusual thermostable aspartic protease from the latex of Ficus racemosa (L.). Phytochemistry. 2008;69(3):647–55.

    Article  CAS  PubMed  Google Scholar 

  • Domsalla A, Melzig MF. Occurrence and properties of proteases in plant latices. Planta Med. 2008;74(7):699–711.

    Article  CAS  PubMed  Google Scholar 

  • Eagle H, Harris TN. Studies in blood coagulation: V. The coagulation of blood by proteolytic enzymes (trypsin, papain). J Gen Physiol. 1937;20(4):543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrell BD, Dussourd DE, Mitter C. Escalation of plant defense: do latex and resin canals spur plant diversification? Am Nat. 1991;138(4):881–900.

    Article  Google Scholar 

  • Fernández-Lucas J, Castañeda D, Hormigo D. New trends for a classical enzyme: papain, a biotechnological success story in the food industry. Trends Food Sci Technol. 2017;68:91–101.

    Article  CAS  Google Scholar 

  • Fonseca KC, Morais NC, Queiroz MR, Silva MC, Gomes MS, Costa JO, et al. Purification and biochemical characterization of Eumiliin from Euphorbia milii var. hislopii latex. Phytochemistry. 2010;71(7):708–15.

    Article  CAS  PubMed  Google Scholar 

  • Glynn L. The pathology of scar tissue formation. Handbook of inflammation. 1981;3:120–128.

    Google Scholar 

  • Gomes MT, Oliva ML, Lopes MT, Salas CE. Plant proteinases and inhibitors: an overview of biological function and pharmacological activity. Curr Protein Pept Sci. 2011;12(5):417–36.

    Article  CAS  PubMed  Google Scholar 

  • Gowda CD, Shivaprasad HV, Kumar RV, Rajesh R, Saikumari YK, Frey BM, et al. Characterization of major zinc containing myonecrotic and procoagulant metalloprotease ‘malabarin’from non lethal Trimeresurus malabaricus snake venom with thrombin like activity: its neutralization by chelating agents. Curr Top Med Chem. 2011;11(20):2578–88.

    Article  CAS  PubMed  Google Scholar 

  • Goyal M, Nagori B, Sasmal D. Wound healing activity of latex of Euphorbia caducifolia. J Ethnopharmacol. 2012;144(3):786–90.

    Article  CAS  PubMed  Google Scholar 

  • Green KA, Almholt K, Ploug M, Rønø B, Castellino FJ, Johnsen M, et al. Profibrinolytic effects of metalloproteinases during skin wound healing in the absence of plasminogen. J Investig Dermatol. 2008;128(8):2092–101.

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes-Ferreira CA, Rodrigues EG, Mortara RA, Cabral H, Serrano FA, Ribeiro-dos-Santos R, et al. Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa. Neoplasia. 2007;9(9):723–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Headon D, Walsh G. The industrial production of enzymes. Biotechnol Adv. 1994;12(4):635–46.

    Article  CAS  PubMed  Google Scholar 

  • James JF. The milkweeds. Am Nat. 1887;21(7):605–15.

    Article  Google Scholar 

  • Kasarla R, Elumalai A, Chinna Eswaraiah M, Ravi P, Naresh V. An annual review on wound-healing medicinal plants (Jan–Dec 2011). Scholars Res Library. 2012;2:182–5.

    Google Scholar 

  • Kniep H. Ãœber die Bedeutung des Milchsafls der Pflanzen. Flora oder Allgemeine Botanische Zeitung. 1905;94:129–205.

    Article  Google Scholar 

  • Konno K. Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry. 2011;72(13):1510–30.

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Vijayakumar M, Govindarajan R, Pushpangadan P. Ethnopharmacological approaches to wound healing exploring medicinal plants of India. J Ethnopharmacol. 2007;114(2):103–13.

    Article  CAS  PubMed  Google Scholar 

  • Labarère J. Proteolytic activities during growth and aging in the fungus Podospora anserina: effect of specific mutations. Arch Microbiol. 1980;124(2):269–74.

    Article  Google Scholar 

  • Lequette Y, Boels G, Clarisse M, Faille C. Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling. 2010;26(4):421–31.

    Article  CAS  PubMed  Google Scholar 

  • Lewinsohn TM. The geographical distribution of plant latex. Chemoecology. 1991;2(1):64–8.

    Article  Google Scholar 

  • Li Q, Yi L, Marek P, Iverson BL. Commercial proteases: present and future. FEBS Lett. 2013;587(8):1155–63.

    Article  CAS  PubMed  Google Scholar 

  • Lijnen H. Matrix metalloproteinases and cellular fibrinolytic activity. Biochem Mosc. 2002;67(1):92–8.

    Article  CAS  Google Scholar 

  • Lopez-Otin C, Bond JS. Proteases: multifunctional enzymes in life and disease. J Biol Chem. 2008;283(45):30433–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhães A, Magalhães HP, Richardson M, Gontijo S, Ferreira RN, Almeida AP, et al. Purification and properties of a coagulant thrombin-like enzyme from the venom of Bothrops leucurus. Comp Biochem Physiol A Mol Integr Physiol. 2007;146(4):565–75.

    Article  PubMed  CAS  Google Scholar 

  • Mahajan RT, Badgujar SB. Biological aspects of proteolytic enzymes: a review. J Pharm Res. 2010;3(9):2048–68.

    Google Scholar 

  • Mahlberg PG. Laticifers: an historical perspective. Bot Rev. 1993;59(1):1–23.

    Article  Google Scholar 

  • Martin A. The use of antioxidants in healing. Dermatol Surg. 1996;22(2):156–60.

    Article  CAS  PubMed  Google Scholar 

  • Martin P. Wound healing-aiming for perfect skin regeneration. Science. 1997;276(5309):75–81.

    Article  CAS  PubMed  Google Scholar 

  • Mekkriengkrai D, Ute K, Swiezewska E, Chojnacki T, Tanaka Y, Sakdapipanich JT. Structural characterization of rubber from jackfruit and euphorbia as a model of natural rubber. Biomacromolecules. 2004;5(5):2013–9.

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe C. Distribution of latex in the plant kingdom. Econ Bot. 1967;21(2):115–27.

    Article  Google Scholar 

  • Miner KJ, CWCN F, Agbim SN, editors. Papain-urea-chlorophyllin copper complex sodium ointment (PUC) and trypsin, balsam peru, and castor oil (TBC) in the treatment and healing of recurrent Stage II and Stage III pressure ulcers. In: The 38th Annual WOCN Society Conference; 2006.

    Google Scholar 

  • Nath L, Dutta S. Wound healing response of the proteolytic enzyme curcain. Indian J Pharmacol. 1992;24(2):114.

    Google Scholar 

  • Oduola T, Adeosun GO, Oduola TA, Avwioro GO, Oyeniyi MA. Mechanism of action of Jatropha gossypifolia stem latex as a haemostatic agent. Eur J Gen Med. 2005;2(4):140–3.

    Article  Google Scholar 

  • Osoniyi O, Onajobi F. Coagulant and anticoagulant activities in Jatropha curcas latex. J Ethnopharmacol. 2003;89(1):101–5.

    Article  PubMed  Google Scholar 

  • Park J-H, Lee J-H, Cho MH, Herzberg M, Lee J. Acceleration of protease effect on Staphylococcus aureus biofilm dispersal. FEMS Microbiol Lett. 2012;335(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  • Patel GK, Kawale AA, Sharma AK. Purification and physicochemical characterization of a serine protease with fibrinolytic activity from latex of a medicinal herb Euphorbia hirta. Plant Physiol Biochem. 2012;52:104–11.

    Article  CAS  PubMed  Google Scholar 

  • Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, et al. Noneluting enzymatic antibiofilm coatings. ACS Appl Mater Interfaces. 2012;4(9):4708–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porras-Reyes BH, Lewis WH, Roman J, Simchowitz L, Mustoe TA. Enhancement of wound healing by the alkaloid taspine defining mechanism of action. Proc Soc Exp Biol Med. 1993;203(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  • Powers ME, Smith PA, Roberts TC, Fowler BJ, King CC, Trauger SA, et al. Type I signal peptidase and protein secretion in Staphylococcus epidermidis. J Bacteriol. 2011;193(2):340–8.

    Article  CAS  PubMed  Google Scholar 

  • Priya KS, Gnanamani A, Radhakrishnan N, Babu M. Healing potential of Datura alba on burn wounds in albino rats. J Ethnopharmacol. 2002;83(3):193–9.

    Article  PubMed  Google Scholar 

  • Priyanka Uday RRA, Bhat PR, Rinimol VR, Bindu J, Nafeesa Z, Swamy SN. Laticiferous plant proteases in wound care. Int J Pharm Pharm Sci. 2015;7(1):44–9.

    Google Scholar 

  • Prusti A, Behera K. Ethnobotanical exploration of Malkangiri district of Orissa, India. Int J Ethnobot Res Ethnobot Leaflets. 2007;2007(1):14.

    Google Scholar 

  • Rajesh R, Gowda CR, Nataraju A, Dhananjaya B, Kemparaju K, Vishwanath B. Procoagulant activity of Calotropis gigantea latex associated with fibrin (ogen) olytic activity. Toxicon. 2005;46(1):84–92.

    Google Scholar 

  • Rajesh R, Nataraju A, Gowda C, Frey B, Frey F, Vishwanath B. Purification and characterization of a 34-kDa, heat stable glycoprotein from Synadenium grantii latex: action on human fibrinogen and fibrin clot. Biochimie. 2006;88(10):1313–22.

    Google Scholar 

  • Rajesh R, Shivaprasad HV, Gowda CDR, Nataraju A, Dhananjaya BL, Vishwanath BS. Comparative study on plant latex proteases and their involvement in hemostasis: a special emphasis on clot inducing and dissolving properties. Planta Med. 2007;73(10):1061–7.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra Reddy P, Rao PP, Prabhakar M. Ethnomedicinal practices amongst Chenchus of Nagarjunasagar Srisailam Tiger Reserve (NSTR), Andhra Pradesh: plant remedies for cuts, wounds and boils. Ethnobot. 2003;15:67–71.

    Google Scholar 

  • Ramos MV, Grangeiro TB, Freire EA, Sales MP, Souza DP, Araújo ES, et al. The defensive role of latex in plants: detrimental effects on insects. Arthropod Plant Interact. 2010;4(1):57–67.

    Article  Google Scholar 

  • Ramos MV, Viana CA, Silva AF, Freitas CD, Figueiredo IS, Oliveira RS, et al. Proteins derived from latex of C. procera maintain coagulation homeostasis in septic mice and exhibit thrombin-and plasmin-like activities. Naunyn Schmiedeberg’s Arch Pharmacol. 2012;385(5):455–63.

    Article  CAS  Google Scholar 

  • Ramproshad S, Afroz T, Mondal B, Khan R, Ahmed S. Screening of phytochemical and pharmacological activities of leaves of medicinal plant Plumeria rubra. Int J Res Pharma Chem. 2012;2(4):1001–7.

    Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res. 2009;38(suppl 1):D227–D33.

    PubMed  PubMed Central  Google Scholar 

  • Richter G, Schwarz HP, Dorner F, Turecek PL. Activation and inactivation of human factor X by proteases derived from Ficus carica. Br J Haematol. 2002;119(4):1042–51.

    Article  CAS  PubMed  Google Scholar 

  • de Roos A, Grassin C, Herweijer M, Kragh KM, Poulsen CH, Soe JB, et al. Industrial enzymes: enzymes in food applications. In: Enzymes in industry: production and applications. 2nd ed; 2004. p. 101–55.

    Google Scholar 

  • Salas CE, Gomes MT, Hernandez M, Lopes MT. Plant cysteine proteinases: evaluation of the pharmacological activity. Phytochemistry. 2008;69(12):2263–9.

    Article  CAS  PubMed  Google Scholar 

  • Samuel JK, Andrews B. Traditional medicinal plant wealth of Pachalur and Periyur hamlets Dindigul district, Tamil Nadu. Indian J Trad Knowl. 2010;9(2):264–70.

    Google Scholar 

  • Sathya M, Kokilavani R. Phytochemical screening and in vitro antioxidant activity of Saccharum spontaneum Linn. Int J Pharm Sci Rev Res. 2013;18(1):75–9.

    Google Scholar 

  • Sawant R, Nagendran S. Protease: an enzyme with multiple industrial applications. World J Pharm Sci. 2014;3:568–79.

    CAS  Google Scholar 

  • Sengupta A, Bhattacharya D, Pal G, Sinha N. Comparative studies on calotropins DI and DII from the latex of Calotropis gigantea. Arch Biochem Biophys. 1984;232(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  • Sharma Y, Jeyabalan G, Singh R, Semwal A. Current aspects of wound healing agents from medicinal plants: a review. J Med Plants Studies. 2013;1:2320–3862.

    Google Scholar 

  • Sherry S, Fletcher AP, Alkjaersig N. Fibrinolysis and fibrinolytic activity in man. Physiol Rev. 1959;39(2):343–82.

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad H, Rajesh R, Nanda B, Dharmappa K, Vishwanath B. Thrombin like activity of Asclepias curassavica L. latex: action of cysteine proteases. J Ethnopharmacol. 2009;123(1):106–9.

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad HV, Rajaiah R, Frey BM, Frey FJ, Vishwanath BS. Pergularain e I’–a plant cysteine protease with thrombin-like activity from Pergularia extensa latex. Thrombosis Res. 2010a;125(3):e100–e5.

    Article  CAS  Google Scholar 

  • Shivaprasad HV, Rajesh R, Yariswamy M, Vishwanath BS. Procoagulant properties of plant latex proteases. Toxin Hemost. 2010b:591–603.

    Google Scholar 

  • Shivaprasad H, Rajesh R, Vishwanath B. Hemostatic interference of plant latex proteases. SM J Clin Pathol. 2016;1(1):1–7.

    Google Scholar 

  • Singh KA, Kumar R, Rao GRK, Jagannadham MV. Crinumin, a chymotrypsin-like but glycosylated serine protease from Crinum asiaticum: purification and physicochemical characterisation. Food Chem. 2010;119(4):1352–8.

    Article  CAS  Google Scholar 

  • Singh MK, Usha R, Hithayshree K, Bindhu O. Hemostatic potential of latex proteases from Tabernaemontana divaricata (L.) R. Br. ex. Roem. and Schult. and Artocarpus altilis (Parkinson ex. FA Zorn) Forsberg. J Thromb Thrombolysis. 2015;39(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  • Siritapetawee J, Thumanu K, Sojikul P, Thammasirirak S. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex. Biochim Biophys Acta. 2012;1824(7):907–12.

    Article  CAS  PubMed  Google Scholar 

  • Stanley LR, Vinay K, Abul K, Ramzi S, Nelson F. Robbins & cotran pathologic basis of disease-8th Edition. 8th ed. Philadelphia, PA: Saunders/Elsevier; 2010.

    Google Scholar 

  • Steenkamp V, Mathivha E, Gouws M, Van Rensburg C. Studies on antibacterial, antioxidant and fibroblast growth stimulation of wound healing remedies from South Africa. J Ethnopharmacol. 2004;95(2):353–7.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian SP, Saratha V. Evaluation of antibacterial activity of Calotropis gigantea latex extract on selected pathogenic bacteria. J Pharm Res. 2010;3(3):517–21.

    Google Scholar 

  • Suh DD, Schwartz IP, Canning DA, Snyder HM, Zderic SA, Kirsch AJ. Comparison of dermal and epithelial approaches to laser tissue soldering for skin flap closure. Lasers Surg Med. 1998;22(5):268–74.

    Article  CAS  PubMed  Google Scholar 

  • Taylor RM, Cuming AC. Purification of an endoproteinase that digests the wheat ‘Em’protein in vitro, and determination of its cleavage sites. FEBS Lett. 1993;331(1–2):76–80.

    Article  CAS  PubMed  Google Scholar 

  • Thankamma L. Hevea latex as a wound healer and pain killer. Curr Sci. 2003;84(8):971–2.

    Google Scholar 

  • Uday P, Maheshwari M, Sharanappa P, Nafeesa Z, Kameshwar VH, Priya B, et al. Exploring hemostatic and thrombolytic potential of heynein-A cysteine protease from Ervatamia heyneana latex. J Ethnopharmacol. 2017;199:316–22.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay R. Plant latex: a natural source of pharmaceuticals and pesticides. Int J Green Pharm. 2011;5(3):169.

    Article  Google Scholar 

  • Venkatesh B, Achar RR, Sharanappa P, Priya B, Swamy SN. Synergistic caseinolytic activity and differential fibrinogenolytic action of multiple proteases of Maclura spinosa (Roxb. ex Willd.) latex. Pharmacogn Mag. 2015;11(Suppl 3):S457.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verpoorte R. Pharmacognosy in the new millennium: leadfinding and biotechnology. J Pharm Pharmacol. 2000;52(3):253–62.

    Article  CAS  PubMed  Google Scholar 

  • Viana CA, Oliveira JS, Freitas CD, Alencar NM, Carvalho CP, Nishi BC, et al. Thrombin and plasmin-like activities in the latices of Cryptostegia grandiflora and Plumeria rubra. Blood Coagul Fibrinolysis. 2013;24(4):386–92.

    Article  CAS  PubMed  Google Scholar 

  • Walsh G. Proteins: biochemistry and biotechnology. Hoboken, NJ: John Wiley & Sons; 2002.

    Google Scholar 

  • Whitley P. Papain-urea-chlorophyllin copper complex sodium debriding ointment to assist with resolution of traumatic leg wound: 634. J Wound Ostomy Cont Nurs. 2005;32(3S):S13.

    Article  Google Scholar 

  • Winnick T, Davis AR, Greenberg DM. Physicochemical properties of the proteolytic enzyme from the latex of the milkweed, Asclepias speciosa Torr. some comparisons with other proteases. J Gen Physiol. 1940;23(3):275–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagami T, Sato M, Nakamura A, Komiyama T, Kitagawa K, Akasawa A, et al. Plant defense–related enzymes as latex antigens. J Allergy Clin Immunol. 1998;101(3):379–85.

    Article  CAS  PubMed  Google Scholar 

  • Yariswamy M, Shivaprasad H, Joshi V, Urs AN, Nataraju A, Vishwanath B. Topical application of serine proteases from Wrightia tinctoria R. Br.(Apocyanaceae) latex augments healing of experimentally induced excision wound in mice. J Ethnopharmacol. 2013;149(1):377–83.

    Article  CAS  PubMed  Google Scholar 

  • Yegin S, Dekker P. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Sci Technol. 2013;93(6):565–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Bindhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, M.K., Bindhu, O.S. (2020). Plant Latex: A Rich Source of Haemostatic Proteases. In: Sen, S., Chakraborty, R. (eds) Herbal Medicine in India. Springer, Singapore. https://doi.org/10.1007/978-981-13-7248-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7248-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7247-6

  • Online ISBN: 978-981-13-7248-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics