Skip to main content

Computationally Designed Recombinant-DNA-Based Compounds Production Driven in Plants During Secondary Metabolism and Their Implication in Antimalarial Therapies

  • Chapter
  • First Online:
Book cover Natural Bio-active Compounds

Abstract

Well-established and newly developed genome technologies are revolutionising the field of biomedicine, by providing genomic data and genetic engineered structures that support investigating individual propensity for developing certain diseases, on one hand, and by predicting individual responses to the environmental stimulus due to gene common variants. Indeed, the former has provided innovative ways of combining genotype-phenotype-based therapies for a wide range of diseases, including malaria and its side effects. Ultimately, computationally guided gene modifications via in silico design of plasmids have contributed with the optimal production of recombinant DNA, benefiting from useful species variant traits. On the other hand, natural or semisynthetic plant secondary metabolites-derived compounds have been used in diseases’ therapies, particularly treating infectious diseases as malaria. In recent years, major efforts have been made to reduce the burden of infectious diseases worldwide, especially in the developing world. In this context, malaria prevention and treatment have stimulated collective measures, which are widely reported by the World Health Organization (WHO). Therefore, aiming at addressing the latest advances in the field, in this chapter, the relevance of pharmacogenomics and computational design in drug discovery, including information on the benefits of using plants secondary metabolites for the production of anti-malarial compounds, are presented. Moreover, given the plethora of prospective side effects resulting from this burden of disease, including neurocognitive impairment in patients affected by cerebral Plasmodium falciparum infection, a set of key elements in patient-response-based drug screening is discussed, in the context of stem cells technology. All together, we anticipate the above mentioned new technologies to be the precursors of short-term novelty in computationally designed gene-personalised healthcare, bringing about significant improvement in the current malarial therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badley AD, Sainski A, Wightman F, Lewin SR (2013) Altering cell death pathways as an approach to cure HIV infection. Cell Death Dis 4:e718. https://doi.org/10.1038/cddis.2013.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, May AP (2014) Unraveling the potential of CRISPR-Cas9 for gene therapy. Expert Opin Biol Ther 15:1–4. https://doi.org/10.1517/14712598.2015.994501

    Article  CAS  Google Scholar 

  • Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34(9):933–941

    Article  CAS  PubMed  Google Scholar 

  • Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJM (1986) The expression of a nopaline synthase ? Human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6(5):347–357

    Article  CAS  PubMed  Google Scholar 

  • Basile DV, Akhtari N, Durand Y, Nair MSR (1993) Toward the production of artemisinin through tissue culture: determining nutrient-hormone combinations suitable for cell suspension cultures. In Vitro Cell Dev Biol-Plant 29:143–147. https://doi.org/10.1007/BF02632286

    Article  Google Scholar 

  • Biolabs (2007) CRISPR / Cas9 and targeted genome editing : a new era in molecular biology. New Engl BioLabs:1–4

    Google Scholar 

  • Boone PM, Campbell IM, Baggett BC, Soens ZT, Rao MM, Hixson PM, Patel A, Bi W, Cheung SW, Lalani SR, Beaudet AL, Stankiewicz P, Shaw CA, Lupski JR (2013) Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles. Genome Res 23:1383–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulter D (1993) Insect pest control by copying nature using genetically engineered crops. Phytochemistry 34(6):1453–1466

    Article  CAS  PubMed  Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Article  CAS  PubMed  Google Scholar 

  • Breitling R, Takano E (2015) Synthetic biology advances for pharmaceutical production. Curr Opin Biotechnol 35:46–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner S (2009) Interview with Sydney Brenner by Soraya de Chadarevian. Stud Hist Phil Biol Biomed Sci 40:65–71

    Article  Google Scholar 

  • Callaway E (2016a) Second Chinese team reports gene editing in human embryos. Nature 2016:19718. https://doi.org/10.1038/nature.2016.19718

    Article  Google Scholar 

  • Callaway E (2016b) UK scientists gain licence to edit genes in human embryos. Nature 530:19270. https://doi.org/10.1038/nature.2016.19270

    Article  CAS  Google Scholar 

  • Carotta S, Pilat S, Mairhofer A, Schmidt U, Dolznig H, Steinlein P, Beug H (2004) Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood 104:1873–1880

    Article  CAS  PubMed  Google Scholar 

  • Carrière Y, Crickmore N, Tabashnik BE (2015) Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol 33:161–168

    Article  PubMed  CAS  Google Scholar 

  • Castillo A (2016) Gene editing using CRISPR-Cas9 for the treatment of lung cancer. Colomb Medica 47:178–180

    Google Scholar 

  • Chintapalli VR, Wang J, Dow JAT (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720

    Article  CAS  PubMed  Google Scholar 

  • Cleaver JE, Boyer HW (1972) Solubility and dialysis limits of DNA oligonucleotides. BBA Sect Nucleic Acids Protein Synth 262:116–124

    CAS  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crozier A, Clifford MN, Ashihara H (2006) Plant secondary metabolites: occurrence, structure and role in the human diet. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Delbridge ARD, Grabow S, Strasser A, Vaux DL (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 16:99–109

    Article  CAS  PubMed  Google Scholar 

  • Devi K, Mishra SK, Sahu J, Panda D, Modi MK, Sen P (2016) Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus. Sci Rep 6:21026. https://doi.org/10.1038/srep21026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elfahmi, Suhandono S, Chahyadi A (2014) Optimization of genetic transformation of Artemisia annua L. using Agrobacterium for Artemisinin production. Pharmacogn Mag 10:S176–S180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erhart E, Hollenberg CP (1983) The presence of a defective LEU2 gene on 2. DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol 156:625–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Farhi M, Kozin M, Duchin S, Vainstein A (2013) Metabolic engineering of plants for artemisinin synthesis. Biotechnol Genet Eng Rev 29(2):135–148

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald JC, Plun-Favreau H (2008) Emerging pathways in genetic Parkinson’s disease: autosomal-recessive genes in Parkinson’s disease-A common pathway. FEBS J 275:5758–5766

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Waggoner D, Stephens M, Ober C, Przeworski M (2015) An estimate of the average number of recessive lethal mutations carried by humans. Genetics 199:1243–1254

    Article  PubMed  PubMed Central  Google Scholar 

  • GenBank (2013) GenBank. https://www.ncbi.nlm.nih.gov/genbank/. Accessed 28 Aug 2018

  • Goldstein DA, Thomas JA (2004) Biopharmaceuticals derived from genetically modified plants. QJM 97:705–716

    Article  CAS  PubMed  Google Scholar 

  • Goto H, Osaki T, Kijima T, Nishino K, Kumagai T, Funakoshi T, Kimura H, Takeda Y, Yoneda T, Tachibana I, Hayashi S (2001) Gene therapy utilizing the Cre/loxP system selectively suppresses tumor growth of disseminated carcinoembryonic antigen-producing cancer cells. Int J Cancer 94(3):414–419

    Article  CAS  PubMed  Google Scholar 

  • Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA, Kaufman TC, Oliver B, Celniker SE (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (1990) Role of secondary metabolites in chemical defence mechanisms in plants. Ciba Found Symp 154:126–134

    CAS  PubMed  Google Scholar 

  • Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11(7):476–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingdale MR, Nardin EH, Tharavanij S et al (1984) Inhibition of entry of plasmodium falciparum and P. vivax sporozoites into cultured cells; an in vitro assay of protective antibodies. J Immunol 132:909–913

    CAS  PubMed  Google Scholar 

  • Hou CT, Shaw J-F, Taichung T (2009) Biocatalysis and agricultural biotechnology. In: International symposium on biocatalysis and biotechnology (3rd: 2007). CRC Press, Boca Raton/London/New York

    Google Scholar 

  • Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Im W, Moon J, Kim M (2016) Applications of CRISPR/Cas9 for gene editing in hereditary movement disorders. J Mov Disord 9(3):136–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson D, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A 69:2904–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser J, Normile D (2015) Embryo engineering study splits scientific community. Science 348:486–487

    Article  CAS  PubMed  Google Scholar 

  • Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 33:581–588

    Article  PubMed  PubMed Central  Google Scholar 

  • Keng CL, Singaram N, Lim BP (2010) Production of artemisinin from cell suspension culture of Artemisia annua L. 139. Asian Pac J Mol Biol Biotechnol 18:139–141

    Google Scholar 

  • Key S, Ma JK-C, Drake PM (2008) Genetically modified plants and human health. J Royal Soc Med 101:290–298

    Article  Google Scholar 

  • Kim Y-H, Nobusawa S, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K, Sure U, Wrede K, Nakazato Y, Tanaka Y, Vital A, Mariani L, Stawski R, Watanabe T, De Girolami U, Kleihues P, Ohgaki H (2010) Molecular classification of low-grade diffuse gliomas. Am J Pathol 177(6):2708–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein J, Heal JR, Hamilton WDO et al (2014) Yeast synthetic biology platform generates novel chemical structures as scaffolds for drug discovery. ACS Synth Biol 3:314–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostina MB, Sass AV, Stukacheva EA, Korobko IV, Sverdlov ED (2017) Enhanced vector design for cancer gene therapy with hierarchical enhancement of therapeutic transgene expression. Hum Gene Ther Methods 28:247–254

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Jäättelä M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–897

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

  • Kubo S-I, Hattori N, Mizuno Y (2006) Recessive Parkinson’s disease. Mov Disord 21:885–893

    Article  PubMed  Google Scholar 

  • Kuismanen SA, Holmberg MT, Salovaara R, de la Chapelle A, Peltomäki P (2000) Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers. Am J Pathol 156:1773–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin P, Harrigan GG (2007) Opportunities and surprises in crops modified by transgenic technology: metabolic engineering of benzylisoquinoline alkaloid, gossypol and lysine biosynthetic pathways. Metabolomics 3:371–382

    Article  CAS  Google Scholar 

  • Li JWH, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier. Science 325:161–165

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JY, Ott S, Crowther DC (2016) Drosophila melanogaster as a model for studies on the early stages of Alzheimer’s disease. Methods Mol Biol 1303:227–239

    Article  PubMed  Google Scholar 

  • Lin JH (2016) Review structure and dynamics-based computational design of anticancer drugs. Biopolymers 105:2–9

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhao Y, Wang Y (2006) Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl Microbiol Biotechnol72:11–20

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wang X, Tzin V, Romeis J, Peng Y, Li Y (2016) Combined transcriptome and metabolome analyses to understand the dynamic responses of rice plants to attack by the rice stem borer Chilo suppressalis (Lepidoptera: Crambidae). BMC Plant Biol 16:259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Shen Q, Zhang L, Zhang F, Jiang W, Lv Z, Yan T, Fu X, Wang G, Tang K (2013) Promotion of artemisinin biosynthesis in transgenic Artemisia annua by overexpressing ADS, CYP71AV1 and CPR genes. Indust Crops Prod 49:380–385

    Article  CAS  Google Scholar 

  • Malik S, Cusidó RM, Mirjalili MH, Moyanod E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34

    Article  CAS  Google Scholar 

  • Malik S, Bhushan S, Sharma M, Ahuja PS (2014a) Biotechnological approaches to the production of shikonins: a critical review with recent updates. Crit Rev Biotechnol 36:327–340

    Article  PubMed  CAS  Google Scholar 

  • Malik S, Bíba O, Grúz J, Arroo RRJ, strand M (2014b) Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochem Rev 13:893–913

    Article  CAS  Google Scholar 

  • Manner J, Radlwimmer B, Hohenberger P, Mössinger K, Küffer S, Sauer C, Belharazem D, Zettl A, Coindre J-M, Hallermann C, Hartmann JT, Katenkamp D, Katenkamp K, Schöffski P, Sciot R, Wozniak A, Lichter P, Marx A, Ströbel P (2010) MYC high level gene amplification is a distinctive feature of Angiosarcomas after irradiation or chronic lymphedema. Am J Pathol 176(1):34–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markus MB (1976) Possible support for the sporozoite hypothesis of relapse and latency in malaria. Clin Sports Med 70:535

    CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matarin M, Salih DA, Yasvoina M, Cummings DM, Guelfi S, Liu W, Nahaboo Solim MA, Moens TG, Paublete RM, Ali SS, Perona M, Desai R, Smith KJ, Latcham J, Fulleylove M, Richardson JC, Hardy J, Edwards FA (2015) A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep 10:633–644

    Article  CAS  PubMed  Google Scholar 

  • Muangphrom P, Seki H, Fukushima EO, Muranaka T (2016) Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites. J Nat Med 70:318–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair MSR, Acton N, Klayman DL, Kendrick K, Basile DV, Mante S (1986) Production of artemisinin in tissue cultures of Artemisia Annua. J Nat Prod 49:504–507

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Neumann-Staubitz P (2010) Synthetic biology approaches in drug discovery and pharmaceutical biotechnology. Appl Microbiol Biotechnol 87:75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niedernhofer LJ, Kirkland JL, Ladiges W (2017) Molecular pathology endpoints useful for aging studies. Ageing Res Rev 35:241–249

    Article  CAS  PubMed  Google Scholar 

  • Panichakul T, Sattabongkot J, Chotivanich K, Sirichaisinthop J, Cui L, Udomsangpetch R (2007) Production of erythropoietic cells in vitro for continuous culture of Plasmodium vivax. Int J Parasitol 37:1551–1557

    Article  PubMed  Google Scholar 

  • Pereira GC (2017a) Genomics and artificial intelligence working together in drug discovery and repositioning: the advent of adaptive pharmacogenomics in Glioblastoma and chronic arterial inflammation therapies. In: Malik S (ed) Biotechnology and production of anticancer compounds. Springer International Publishing, Cham, pp 253–281

    Chapter  Google Scholar 

  • Pereira G (2017b) A multiscale haemorheological computer-based model of chronic inflammation: an in-depth investigation of erythrocytes-driven flow characteristics in atheroma development–the application of the three IB method. In: Malik S (ed) Biotechnology and production of anti-Cancer compounds. Springer, Cham, p 38

    Google Scholar 

  • Phillips T (2008) Genetically modified organisms (GMOs): transgenic crops and recombinant DNA technology. Nat Edu 1:213

    Google Scholar 

  • Porter JR, Wollenweber B, Jamieson PD, Fischer T (2018) From genes to networks to what-works. Nature Plants 4:234–234

    Article  PubMed  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O’Neal JM, Cornwell T, Pastor I, Fridlender B (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20:522–531

    Article  CAS  PubMed  Google Scholar 

  • Reardon S (2015) New life for pig-to-human transplants. Nature 527:152–154

    Article  CAS  PubMed  Google Scholar 

  • Rischer H, Oksman-Caldentey KM (2006) Unintended effects in genetically modified crops: revealed by metabolomics. Trends Biotechnol 24:102–104

    Article  CAS  PubMed  Google Scholar 

  • Rischer H, T. Hakkinen S, Ritala A, et al (2013) Plant cells as pharmaceutical factories. Curr Pharm Des 19:5640–5660

    Article  CAS  PubMed  Google Scholar 

  • Rocha EM, Hollingdale MR, Sina B, Leland P, Lopes JD, Krettli AU (1993) Common epitopes in the circumsporozoite proteins of Plasmodium berghei and Plasmodium gallinaceum identified by monoclonal antibodies to the P. gallinaceum circumsporozoite protein. J Eukaryot Microbiol 40:61–63

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M, Goldblum A (2006) Computational protein design: a novel path to future protein drugs. Curr Pharm Des 12:3973–3997

    Article  CAS  PubMed  Google Scholar 

  • Sattabongkot J, Yimamnuaychoke N, Leelaudomlipi S, Rasameesoraj M, Jenwithisuk R, Coleman RE, Udomsangpetch R, Cui L, Brewer TG (2006) Establishment of a human hepatocyte line that supports in vitro development of the exo-erythrocytic stages of the malaria parasites Plasmodium falciparum and P. vivax. Am J Trop Med Hyg 74:708–715

    Article  CAS  PubMed  Google Scholar 

  • Schillberg S, Raven N, Fischer R, Twyman RM, Schiermeyer A (2013) Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Des 19:5531–5542

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Voytas DF (2018) Editing plant genes one base at a time. Nat Plants 4:412–413

    Article  CAS  PubMed  Google Scholar 

  • Shanks GD (2012) Control and elimination of Plasmodium vivax. Adv Parasitol 80:301–341

    Article  PubMed  Google Scholar 

  • Shen Q, Chen YF, Wang T, Wu SY, Lu X, Zhang L, Zhang FY, Jiang WM, Wang GF, Tang KX (2012) Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genet Mol Res 11:3298–3309

    Article  CAS  PubMed  Google Scholar 

  • St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176–188

    Article  CAS  PubMed  Google Scholar 

  • Stoger E, Fischer R, Moloney M, Ma JKC (2014) Plant molecular pharming for the treatment of chronic and infectious diseases. Annu Rev Plant Biol 65:743–768

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Horvitz HR (1981) Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev Biol 82:41–55

    Article  CAS  PubMed  Google Scholar 

  • Tang YC, Amon A (2013) Gene copy-number alterations: a cost-benefit analysis. Cell 152:394–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner A, Taylor SE, Decottignies W, Berges BK (2014) Humanized mice as a model to study human hematopoietic stem cell transplantation. Stem Cells Dev 23:76–82

    Article  PubMed  Google Scholar 

  • Tatsis EC, O’Connor SE (2016) New developments in engineering plant metabolic pathways. Curr Opin Biotechnol 42:126–132

    Article  CAS  PubMed  Google Scholar 

  • Tinsley MC, Blanford S, Jiggins FM (2006) Genetic variation in Drosophila melanogaster pathogen susceptibility. Parasitology 132:767–773

    Article  CAS  PubMed  Google Scholar 

  • Trosset JY, Carbonell P (2015) Synthetic biology for pharmaceutical drug discovery. Drug Des Devel Ther 9:6285–6302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uni S, Aikawa M, Collins WE, Campbell CC, Hollingdale MR (1985) Electron microscopy of Plasmodium vivax exoerythrocytic schizonts grown in vitro in a hepatoma cell line. Am J Trop Med Hyg 34:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • van den Akker E, Satchwell TJ, Pellegrin S, Daniels G, Toye AM (2010) The majority of the in vitro erythroid expansion potential resides in CD34(−) cells, outweighing the contribution of CD34(+) cells and significantly increasing the erythroblast yield from peripheral blood samples. Haematologica 95:1594–1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Venken KJT, Bellen HJ (2007) Transgenesis upgrades for Drosophila melanogaster. Development 134:3571–3584

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Reddy VA, Panicker D, Mao H-Z, Kumar N, Rajan C, Venkatesh PN, Chua N-H, Sarojam R (2016) Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor from spearmint. Plant Biotechnol J 14:1619–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Xu S, Wang N, Xia B, Jiang Y, Wang R (2017) Transcriptome analysis of secondary metabolism pathway, transcription factors, and transporters in response to methyl Jasmonate in Lycoris aurea. Front Plant Sci 7

    Google Scholar 

  • Weber W, Fussenegger M (2009) The impact of synthetic biology on drug discovery. Drug Discov Today 14:956–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weedon MN, Cebola I, Patch AM, Flanagan SE, De Franco E, Caswell R, Rodríguez-Seguí SA, Shaw-Smith C, Cho CH, Allen HL, Houghton JA, Roth CL, Chen R, Hussain K, Marsh P, Vallier L, Murray A, Ellard S, Ferrer J, Hattersley AT (2014) Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet 46:61–64

    Article  CAS  PubMed  Google Scholar 

  • WHO, Fact Sheet: World Malaria Report 2015 (2016) https://www.who.int/malaria/media/world-malaria-report-2015/en/. Accessed 15 Apr 2017

  • WHO Prevention, Publications (2016) https://www.who.int/publications/en/. Accessed 15 Apr 2017

  • Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268

    Article  CAS  PubMed  Google Scholar 

  • Xenotransplantation - eGenesis Bio. http://www.egenesisbio.com/about-xenotransplantation.html. Accessed 15 Apr 2017

  • Xiang L, Yan Z, Wang G et al (2012a) Relative expression of genes involved in artemisinin biosynthesis and artemisinin accumulation in different tissues of Artemisia annua. Zhongguo Zhong Yao Za Zhi 37:1169–1173

    CAS  PubMed  Google Scholar 

  • Xiang L, Zeng L, Yuan Y et al (2012b) Key Laboratory of eco-environments in three gorges reservoir region (Ministry of Education), Laboratory of Natural Products and. POJ 5:503–507

    CAS  Google Scholar 

  • Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Wu K, Wu H, He W, Zeng L, Xing M, Wu R, Jiang H, Liu X, Cao D, Guo G, Hu X, Gui Y, Li Z, Xie W, Sun X, Shi M, Cai Z, Wang B, Zhong M, Li J, Lu Z, Gu N, Zhang X, Goodman L, Bolund L, Wang J, Yang H, Kristiansen K, Dean M, Li Y, Wang J (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:886–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav G, Kumar Y, Sahoo G (2012) Role of the computational intelligence in drugs discovery and design: introduction, techniques and software. Int J Comput Appl 51:7–18

    Google Scholar 

  • Yan Y, Liu Q, Zang X, et al (2018) Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature 559:415–418. doi: 10.1038/s41586-018-0319-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Cluett WR, Mahadevan R (2011) EMILiO: A fast algorithm for genome-scale strain design. Metab Eng 13:272–281. doi: 10.1016/j.ymben.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Liu C, Chen D, et al (2017) CRISPR/Cas9-loxP-Mediated Gene Editing as a Novel Site-Specific Genetic Manipulation Tool. Mol Ther Nucleic Acids 7:378–386. doi: 10.1016/j.omtn.2017.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X (2000) Engineering the provitamin A (−carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Yiangou L, Montandon R, Modrzynska K, Rosen B, Bushell W, Hale C, Billker O, Rayner JC, Pance A (2016) A stem cell strategy identifies Glycophorin C as a major erythrocyte receptor for the rodent malaria parasite Plasmodium berghei. PLoS One 11:e0158238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Abraão Lincoln Macedo Silva for figures. His postgraduate thesis was supported by the Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Estado do Maranhão – FAPEMA, Brazil. Additionally, all the authors are grateful to the support received from collaborators and funding bodies as the FAPEMA (Brazil), Institut Carnot (ICM – France), MCINN (Spain), and the BHF (UK). B. Rocamonde acknowledges the Marie Skłodowska-Curie Actions Individual Fellowships (IF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaucia C. Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, G.C., Malik, S., Kis, Z., Rocamonde, B. (2019). Computationally Designed Recombinant-DNA-Based Compounds Production Driven in Plants During Secondary Metabolism and Their Implication in Antimalarial Therapies. In: Swamy, M., Akhtar, M. (eds) Natural Bio-active Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-13-7205-6_6

Download citation

Publish with us

Policies and ethics