Skip to main content

Tear Cocktail: Composition of Tears

Abstract

The seemingly clear tear fluid is actually a complex chemical cocktail comprising everything from proteins and lipids to vitamins, trace elements and the list goes on. Since the entire focus of tear diagnostics is based on altered constituents, understanding what these are is imperative. This chapter covers most of the tear constituents that have been investigated so far.

This is a preview of subscription content, access via your institution.

Buying options

eBook
USD   24.99
Price excludes VAT (USA)
  • ISBN: 978-981-13-7169-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   34.99
Price excludes VAT (USA)
Hardcover Book
USD   34.99
Price excludes VAT (USA)

References: Author’s Tears

  • Abe T, Nakajima A, Matsunaga M, Sakuragi S, Komatsu M (1999) Decreased tear lactoferrin concentration in patients with chronic hepatitis C. Br J Ophthalmol 83:684–687

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abelson MB, Baird RS, Allansmith MR (1980) Tear histamine levels in vernal conjunctivitis and other ocular inflammations. Ophthalmology 87:812–814

    CAS  PubMed  CrossRef  Google Scholar 

  • Ablamowicz AF, Nichols JJ (2017) Concentrations of MUC16 and MUC5AC using three tear collection methods. Mol Vis 23:529–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Acera A, Vecino E, Rodriguez-Agirretxe I, Aloria K et al (2011a) Changes in tear protein profile in keratoconus disease. Eye (Lond) 25:1225–1233

    CAS  CrossRef  Google Scholar 

  • Acera A, Suarez T, Rodriguez-Agirretxe I, Vecino E, Duran JA (2011b) Changes in tear protein profile in patients with conjunctivochalasis. Cornea 30:42–49

    PubMed  CrossRef  Google Scholar 

  • Advedissian T, Deshayes F, Viguier M (2017) Galectin-7 in epithelial homeostasis and carcinomas. Int J Mol Sci 18:2760

    PubMed Central  CrossRef  CAS  Google Scholar 

  • Aho HJ, Saari KM, Kallajoki M, Nevalainen TJ (1996) Synthesis of group II phospholipase A2 and lysozyme in lacrimal glands. Invest Ophthalmol Vis Sci 37:1826–1832

    CAS  PubMed  Google Scholar 

  • Aho VV, Nevalainen TJ, Saari KM (2002b) Group IIA phospholipase A2 content of tears in patients with keratoconjunctivitis sicca. Graefes Arch Clin Exp Ophthalmol 240:521–523

    PubMed  CrossRef  Google Scholar 

  • Aho VV, Paavilainen V, Nevalainen TJ, Peuravuori H, Saari KM (2003a) Diurnal variation in group IIa phospholipase A2 content in tears of contact lens wearers and normal controls. Graefes Arch Clin Exp Ophthalmol 241:85–88

    CAS  PubMed  CrossRef  Google Scholar 

  • Alexander DB, Iigo M, Yamauchi K, Suzui M, Tsuda H (2012) Lactoferrin: an alternative view of its role in human biological fluids. Biochem Cell Biol 90:279–306

    CAS  PubMed  CrossRef  Google Scholar 

  • Allansmith MR, Radl J, Haaijman JJ, Mestecky J (1985) Molecular forms of tear IgA and distribution of IgA subclasses in human lacrimal glands. J Allergy Clin Immunol 76:569–576

    CAS  PubMed  CrossRef  Google Scholar 

  • Aluru SV, Agarwal S, Srinivasan B, Iyer GK et al (2012) Lacrimal proline rich 4 (LPRR4) protein in the tear fluid is a potential biomarker of dry eye syndrome. PLoS One 7:e51979

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Ananthi S, Santhosh RS, Nila MV, Prajna NV et al (2011) Comparative proteomics of human male and female tears by two-dimensional electrophoresis. Exp Eye Res 92:454–463

    CAS  PubMed  CrossRef  Google Scholar 

  • Avetisov SE, Safonova TN, Novikov IA, Pateiuk LS, Griboedova IG (2014) Ocular surface acidity and buffering system (by studying the conjunctival sac). Vestn Oftalmol 130:5–10

    CAS  PubMed  Google Scholar 

  • Baca JT, Finegold DN, Asher SA (2007a) Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul Surf 5:280–293

    CrossRef  PubMed  Google Scholar 

  • Baca JT, Taormina CR, Feingold E, Finegold DN et al (2007b) Mass spectral determination of fasting tear glucose concentrations in nondiabetic volunteers. Clin Chem 53:1370–1372

    CAS  CrossRef  PubMed  Google Scholar 

  • Badamchian M, Damavandy AA, Damavandy H, Wadhwa SD et al (2007) Identification and quantification of thymosin beta4 in human saliva and tears. Ann N Y Acad Sci 1112:458–465

    CAS  PubMed  CrossRef  Google Scholar 

  • Badugu R, Jeng BH, Reece EA, Lakowicz JR (2018) Contact lens to measure individual ion concentrations in tears and applications to dry eye disease. Anal Biochem 542:84–94

    CAS  PubMed  CrossRef  Google Scholar 

  • Balasubramanian SA, Pye DC, Willcox MD (2012a) Levels of lactoferrin, secretory IgA and serum albumin in the tear film of people with keratoconus. Exp Eye Res 96:132–137

    CAS  PubMed  CrossRef  Google Scholar 

  • Balasubramanian SA, Mohan S, Pye DC, Willcox MD (2012b) Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus. Acta Ophthalmol 90:e303–e309

    PubMed  CrossRef  Google Scholar 

  • Balasubramanian SA, Pye DC, Willcox MD (2013a) Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus. Clin Exp Optom 96:214–218

    PubMed  CrossRef  Google Scholar 

  • Balasubramanian SA, Wasinger VC, Pye DC, Willcox MD (2013b) Preliminary identification of differentially expressed tear proteins in keratoconus. Mol Vis 19:2124–2134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballow M, Donshik PC, Mendelson L (1985) Complement proteins and C3 anaphylatoxin in the tears of patients with conjunctivitis. J Allergy Clin Immunol 76:473–476

    CAS  PubMed  CrossRef  Google Scholar 

  • Barka T, Asbell PA, van der Noen H, Prasad A (1991) Cystatins in human tear fluid. Curr Eye Res 10:25–34

    CAS  PubMed  CrossRef  Google Scholar 

  • Barteneva NS, Fasler-Kan E, Bernimoulin M, Stern JN et al (2013) Circulating microparticles: square the circle. BMC Cell Biol 14:23

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bennick A (1982) Salivary proline-rich proteins. Mol Cell Biochem 45:83–99

    CAS  PubMed  CrossRef  Google Scholar 

  • Boehm N, Funke S, Wiegand M, Wehrwein N et al (2013) Alterations in the tear proteome of dry eye patients – a matter of the clinical phenotype. Invest Ophthalmol Vis Sci 54:2385–2392

    PubMed  CrossRef  CAS  Google Scholar 

  • Brauer L, Kindler C, Jager K, Sel S et al (2007a) Detection of surfactant proteins A and D in human tear fluid and the human lacrimal system. Invest Ophthalmol Vis Sci 48:3945–3953

    PubMed  CrossRef  Google Scholar 

  • Brauer L, Johl M, Borgermann J, Pleyer U et al (2007b) Detection and localization of the hydrophobic surfactant proteins B and C in human tear fluid and the human lacrimal system. Curr Eye Res 32:931–938

    PubMed  CrossRef  CAS  Google Scholar 

  • Brinchmann MF, Patel DM, Iversen MH (2018) The role of galectins as modulators of metabolism and inflammation. Mediators Inflamm 2018:9186940

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Butrus SI, Ochsner KI, Abelson MB, Schwartz LB (1990) The level of tryptase in human tears. An indicator of activation of conjunctival mast cells. Ophthalmology 97:1678–1683

    CAS  PubMed  CrossRef  Google Scholar 

  • Byun YS, Lee HJ, Shin S, Chung SH (2017) Elevation of autophagy markers in Sjogren syndrome dry eye. Sci Rep 7:17280

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Caffery B, Joyce E, Heynen ML, Jones L et al (2008a) MUC16 expression in Sjogren’s syndrome, KCS, and control subjects. Mol Vis 14:2547–2555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cancarini A, Fostinelli J, Napoli L, Gilberti ME et al (2017) Trace elements and diabetes: assessment of levels in tears and serum. Exp Eye Res 154:47–52

    CAS  PubMed  CrossRef  Google Scholar 

  • Carlson DM (1993) Salivary proline-rich proteins: biochemistry, molecular biology, and regulation of expression. Crit Rev Oral Biol Med 4:495–502

    CAS  PubMed  CrossRef  Google Scholar 

  • Carney LG (1991) Considerations in contact lens use under adverse conditions: proceedings of a symposium. The National Academies Press, Washington, DC

    Google Scholar 

  • Carracedo G, Carpena C, Concepcion P, Diaz V et al (2017) Presence of melatonin in human tears. J Optom 10:3–4

    PubMed  CrossRef  Google Scholar 

  • Carreno E, Enriquez-de-Salamanca A, Teson M, Garcia-Vazquez C et al (2010) Cytokine and chemokine levels in tears from healthy subjects. Acta Ophthalmol 88:e250–e258

    PubMed  CrossRef  Google Scholar 

  • Chagas CL, Costa Duarte L, Lobo-Junior EO, Piccin E et al (2015) Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips. Electrophoresis 36:1837–1844

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen D, Wei Y, Li X, Epstein S et al (2009) sPLA2-IIa is an inflammatory mediator when the ocular surface is compromised. Exp Eye Res 88:880–888

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen S, Dong H, Yang S, Guo H (2017) Cathepsins in digestive cancers. Oncotarget 8:41690–41700

    PubMed  PubMed Central  Google Scholar 

  • Chhadva P, Lee T, Sarantopoulos CD, Hackam AS et al (2015) Human tear serotonin levels correlate with symptoms and signs of dry eye. Ophthalmology 122:1675–1680

    PubMed  CrossRef  Google Scholar 

  • Choi W, Lian C, Ying L, Kim GE et al (2016) Expression of lipid peroxidation markers in the tear film and ocular surface of patients with non-sjogren syndrome: potential biomarkers for dry eye disease. Curr Eye Res 41:1143–1149

    CAS  PubMed  CrossRef  Google Scholar 

  • Chotikavanich S, de Paiva CS, Li de Q, Chen JJ et al (2009) Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest Ophthalmol Vis Sci 50:3203–3209

    PubMed  CrossRef  Google Scholar 

  • Choy CK, Benzie IF, Cho P (2000) Ascorbic acid concentration and total antioxidant activity of human tear fluid measured using the FRASC assay. Invest Ophthalmol Vis Sci 41:3293–3298

    CAS  PubMed  Google Scholar 

  • Choy CK, Benzie IF, Cho P (2004) Is ascorbate in human tears from corneal leakage or from lacrimal secretion? Clin Exp Optom 87:24–27

    PubMed  CrossRef  Google Scholar 

  • Coyle PK, Sibony PA (1986) Tear immunoglobulins measured by ELISA. Invest Ophthalmol Vis Sci 27:622–625

    CAS  PubMed  Google Scholar 

  • D’Souza S, Tong L (2014) Practical issues concerning tear protein assays in dry eye. Eye Vis (Lond) 1:6

    CrossRef  Google Scholar 

  • Daniel E, Duriasamy M, Ebenezer GJ, Shobhana, Job CK (2004) Elevated free tear lactoferrin levels in leprosy are associated with Type 2 reactions. Indian J Ophthalmol 52:51–56

    PubMed  Google Scholar 

  • Danjo Y, Lee M, Horimoto K, Hamano T (1994) Ocular surface damage and tear lactoferrin in dry eye syndrome. Acta Ophthalmol (Copenh) 72:433–437

    CAS  CrossRef  Google Scholar 

  • Darb-Esfahani S, von Minckwitz G, Denkert C, Ataseven B et al (2014) Gross cystic disease fluid protein 15 (GCDFP-15) expression in breast cancer subtypes. BMC Cancer 14:546

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dartt DA (2011) Tear lipocalin: structure and function. Ocul Surf 9:126–138

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dassati S, Waldner A, Schweigreiter R (2014) Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 35:1632–1642

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Daum KM, Hill RM (1982) Human tear glucose. Invest Ophthalmol Vis Sci 22:509–514

    CAS  PubMed  Google Scholar 

  • De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27:1337–1347

    PubMed  CrossRef  CAS  Google Scholar 

  • de Souza GA, Godoy LM, Mann M (2006) Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol 7:R72

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • De Toro J, Herschlik L, Waldner C, Mongini C (2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 6:203

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Dean AW, Glasgow BJ (2012) Mass spectrometric identification of phospholipids in human tears and tear lipocalin. Invest Ophthalmol Vis Sci 53:1773–1782

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Denisin AK, Karns K, Herr AE (2012) Post-collection processing of Schirmer strip-collected human tear fluid impacts protein content. Analyst 137:5088–5096

    CAS  PubMed  CrossRef  Google Scholar 

  • Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060

    CAS  PubMed  Google Scholar 

  • Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dikovskaya MA, Trunov AN, Chernykh VV, Korolenko TA (2013) Cystatin C and lactoferrin concentrations in biological fluids as possible prognostic factors in eye tumor development. Int J Circumpolar Health 72:21807

    CrossRef  Google Scholar 

  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508

    CAS  PubMed  CrossRef  Google Scholar 

  • Doeuvre L, Plawinski L, Toti F, Angles-Cano E (2009) Cell-derived microparticles: a new challenge in neuroscience. J Neurochem 110:457–468

    CAS  PubMed  CrossRef  Google Scholar 

  • Edman MC, Janga SR, Meng Z, Bechtold M et al (2018) Increased Cathepsin S activity associated with decreased protease inhibitory capacity contributes to altered tear proteins in Sjogren’s Syndrome patients. Sci Rep 8:11044

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Evans V, Vockler C, Friedlander M, Walsh B, Willcox MD (2001) Lacryglobin in human tears, a potential marker for cancer. Clin Exp Ophthalmol 29:161–163

    CAS  PubMed  CrossRef  Google Scholar 

  • Farnaud S, Evans RW (2003) Lactoferrin – a multifunctional protein with antimicrobial properties. Mol Immunol 40:395–405

    CAS  PubMed  CrossRef  Google Scholar 

  • Feigenbaum D, Lew M, Janga S, Shah MK, Mack W, et al. (2018) Tear proteins as possible biomarkers for Parkinson’s disease. Neurology 90: 19–22

    Google Scholar 

  • Fleming A (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc London 93:306–317

    CAS  CrossRef  Google Scholar 

  • Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318(Pt 1):1–14

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fluckinger M, Haas H, Merschak P, Glasgow BJ, Redl B (2004) Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob Agents Chemother 48:3367–3372

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fukuda M, Fullard RJ, Willcox MD, Baleriola-Lucas C et al (1996) Fibronectin in the tear film. Invest Ophthalmol Vis Sci 37:459–467

    CAS  PubMed  Google Scholar 

  • Fullard RJ, Snyder C (1990) Protein levels in nonstimulated and stimulated tears of normal human subjects. Invest Ophthalmol Vis Sci 31:1119–1126

    CAS  PubMed  Google Scholar 

  • Gachon AM, Lacazette E (1998) Tear lipocalin and the eye’s front line of defence. Br J Ophthalmol 82:453–455

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    CAS  PubMed  CrossRef  Google Scholar 

  • Gasset AR, Braverman LE, Fleming MC, Arky RA, Alter BR (1968) Tear glucose detection of hyperglycemia. Am J Ophthalmol 65:414–420

    CAS  PubMed  CrossRef  Google Scholar 

  • Gasymov OK, Abduragimov AR, Yusifov TN, Glasgow BJ (1999) Interaction of tear lipocalin with lysozyme and lactoferrin. Biochem Biophys Res Commun 265:322–325

    CAS  PubMed  CrossRef  Google Scholar 

  • Gasymov OK, Abduragimov AR, Prasher P, Yusifov TN, Glasgow BJ (2005) Tear lipocalin: evidence for a scavenging function to remove lipids from the human corneal surface. Invest Ophthalmol Vis Sci 46:3589–3596

    PubMed  CrossRef  Google Scholar 

  • Gee K, Guzzo C, Che Mat NF, Ma W, Kumar A (2009) The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets 8:40–52

    CAS  PubMed  CrossRef  Google Scholar 

  • Glasgow BJ, Gasymov OK (2011) Focus on molecules: tear lipocalin. Exp Eye Res 92:242–243

    CAS  PubMed  CrossRef  Google Scholar 

  • Glasgow BJ, Marshall G, Gasymov OK, Abduragimov AR et al (1999) Tear lipocalins: potential lipid scavengers for the corneal surface. Invest Ophthalmol Vis Sci 40:3100–3107

    CAS  PubMed  Google Scholar 

  • Glasgow BJ, Abduragimov AR, Gassymov OK, Yusifov TN et al (2002) Vitamin E associated with the lipocalin fraction of human tears. Adv Exp Med Biol 506:567–572

    CAS  PubMed  CrossRef  Google Scholar 

  • Gogia R, Richer SP, Rose RC (1998) Tear fluid content of electrochemically active components including water soluble antioxidants. Curr Eye Res 17:257–263

    CAS  PubMed  CrossRef  Google Scholar 

  • Gonzalez-Chavez SA, Arevalo-Gallegos S, Rascon-Cruz Q (2009) Lactoferrin: structure, function and applications. Int J Antimicrob Agents 33(301):e301–e308

    Google Scholar 

  • Gotsch F, Romero R, Friel L, Kusanovic JP et al (2007) CXCL10/IP-10: a missing link between inflammation and anti-angiogenesis in preeclampsia? J Matern Fetal Neonatal Med 20:777–792

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracellular Vesicles 2. https://doi.org/10.3402/jev.v2i0.20389

    CrossRef  Google Scholar 

  • Gregory RL, Allansmith MR (1986) Naturally occurring IgA antibodies to ocular and oral microorganisms in tears saliva and colostrum: evidence for a common mucosal immune system and local immune response. Exp Eye Res 43:739–749

    CAS  PubMed  CrossRef  Google Scholar 

  • Grigor’eva AE, Tamkovich SN, Eremina AV, Tupikin AE et al (2016a) Characteristics of exosomes andmicroparticles discovered in human tears. Biomed Khim 62:99–106

    PubMed  CrossRef  Google Scholar 

  • Grus FH, Podust VN, Bruns K, Lackner K et al (2005) SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci 46:863–876

    PubMed  CrossRef  Google Scholar 

  • Gupta G, Surolia A (2007) Collectins: sentinels of innate immunity. Bioessays 29:452–464

    CAS  PubMed  CrossRef  Google Scholar 

  • Gupta AK, Sarin GS, Mathur MD, Ghosh B (1988) Alpha 1-antitrypsin and serum albumin in tear fluids in acute adenovirus conjunctivitis. Br J Ophthalmol 72:390–393

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Haagensen DE Jr, Mazoujian G, Holder WD Jr, Kister SJ, Wells SA Jr (1977) Evaluation of a breast cyst fluid protein detectable in the plasma of breast carcinoma patients. Ann Surg 185:279–285

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ham BM, Jacob JT, Cole RB (2005) MALDI-TOF MS of phosphorylated lipids in biological fluids using immobilized metal affinity chromatography and a solid ionic crystal matrix. Anal Chem 77:4439–4447

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F (2008) Zinc alpha 2-glycoprotein: a multidisciplinary protein. Mol Cancer Res 6:892–906

    CAS  PubMed  CrossRef  Google Scholar 

  • Hernandez-Ruiz M, Zlotnik A, Llorente L, Hernandez-Molina G (2018) Markedly high salivary and lacrimal CXCL17 levels in primary Sjogren’s syndrome. Joint Bone Spine 85:379–380

    CAS  PubMed  CrossRef  Google Scholar 

  • Hodges RR, Dartt DA (2013) Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp Eye Res 117:62–78

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Holopainen JM, Moilanen JA, Sorsa T, Kivela-Rajamaki M et al (2003) Activation of matrix metalloproteinase-8 by membrane type 1-MMP and their expression in human tears after photorefractive keratectomy. Invest Ophthalmol Vis Sci 44:2550–2556

    PubMed  CrossRef  Google Scholar 

  • Holzfeind P, Merschak P, Dieplinger H, Redl B (1995) The human lacrimal gland synthesizes apolipoprotein D mRNA in addition to tear prealbumin mRNA, both species encoding members of the lipocalin superfamily. Exp Eye Res 61:495–500

    CAS  PubMed  CrossRef  Google Scholar 

  • Hrdličková-Cela E, Plzák J, Smetana K, Mělková Z et al (2001) Detection of galectin-3 in tear fluid at disease states and immunohistochemical and lectin histochemical analysis in human corneal and conjunctival epithelium. Br J Ophthalmol 85:1336

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ihnatko R, Eden U, Lagali N, Dellby A, Fagerholm P (2013) Analysis of protein composition and protein expression in the tear fluid of patients with congenital aniridia. J Proteomics 94:78–88

    CAS  PubMed  CrossRef  Google Scholar 

  • Imanishi J, Takahashi F, Inatomi A, Tagami H et al (1982) Complement levels in human tears. Jpn J Ophthalmol 26:229–233

    CAS  PubMed  Google Scholar 

  • Inic-Kanada A, Nussbaumer A, Montanaro J, Belij S et al (2012) Comparison of ophthalmic sponges and extraction buffers for quantifying cytokine profiles in tears using Luminex technology. Mol Vis 18:2717–2725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson BC, Thompson DC, Wright MW, McAndrews M et al (2011) Update of the human secretoglobin (SCGB) gene superfamily and an example of ‘evolutionary bloom’ of androgen-binding protein genes within the mouse Scgb gene superfamily. Hum Genomics 5:691–702

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Janssen PT, van Bijsterveld OP (1983) The relations between tear fluid concentrations of lysozyme, tear-specific prealbumin and lactoferrin. Exp Eye Res 36:773–779

    CAS  PubMed  CrossRef  Google Scholar 

  • Jensen OL, Gluud BS, Eriksen HO (1985a) Fibronectin in tears following surgical trauma to the eye. Acta Ophthalmol (Copenh) 63:346–350

    CAS  CrossRef  Google Scholar 

  • Jinno A, Park PW (2015) Role of glycosaminoglycans in infectious disease. Methods Mol Biol 1229:567–585

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jumblatt MM, McKenzie RW, Jumblatt JE (1999) MUC5AC mucin is a component of the human precorneal tear film. Invest Ophthalmol Vis Sci 40:43–49

    CAS  PubMed  Google Scholar 

  • Jumblatt MM, Imbert Y, Young WW Jr, Foulks GN et al (2006) Glycoprotein 340 in normal human ocular surface tissues and tear film. Infect Immun 74:4058–4063

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kalra H, Simpson RJ, Ji H, Aikawa E et al (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10:e1001450

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kamboh MI, Ferrell RE (1986) Genetic studies of low-abundance human plasma proteins. I. Microheterogeneity of zinc-alpha 2-glycoprotein in biological fluids. Biochem Genet 24:849–857

    CAS  PubMed  CrossRef  Google Scholar 

  • Kawai S, Nakajima T, Hokari S, Komoda T, Kawai K (2002) Apolipoprotein A-I concentration in tears in diabetic retinopathy. Ann Clin Biochem 39:56–61

    CAS  PubMed  CrossRef  Google Scholar 

  • Kennel KA, Drake MT, Hurley DL (2010) Vitamin D deficiency in adults: when to test and how to treat. Mayo Clin Proc 85:752–757; quiz 757–758

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Keppler D (2006) Towards novel anti-cancer strategies based on cystatin function. Cancer Lett 235:159–176

    CAS  PubMed  CrossRef  Google Scholar 

  • Khaksari M, Mazzoleni LR, Ruan C, Kennedy RT, Minerick AR (2016) Determination of water-soluble and fat-soluble vitamins in tears and blood serum of infants and parents by liquid chromatography/mass spectrometry. Exp Eye Res 155:54–63

    PubMed  CrossRef  CAS  Google Scholar 

  • Khurshid Z, Najeeb S, Mali M, Moin SF et al (2017) Histatin peptides: pharmacological functions and their applications in dentistry. Saudi Pharm J 25:25–31

    PubMed  CrossRef  Google Scholar 

  • Kijlstra A (1990) The role of lactoferrin in the nonspecific immune response on the ocular surface. Reg Immunol 3:193–197

    PubMed  Google Scholar 

  • Kijlstra A, Kuizenga A (1994) Analysis and function of the human tear proteins. Adv Exp Med Biol 350:299–308

    CAS  PubMed  CrossRef  Google Scholar 

  • Kijlstra A, Jeurissen SH, Koning KM (1983) Lactoferrin levels in normal human tears. Br J Ophthalmol 67:199–202

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kishazi E, Dor M, Eperon S, Oberic A et al (2017) Thyroid-associated orbitopathy and tears: a proteomics study. J Proteomics 170:110–116

    PubMed  CrossRef  CAS  Google Scholar 

  • Koo BS, Lee DY, Ha HS, Kim JC, Kim CW (2005) Comparative analysis of the tear protein expression in blepharitis patients using two-dimensional electrophoresis. J Proteome Res 4:719–724

    CAS  PubMed  CrossRef  Google Scholar 

  • Korb DR, Baron DF, Herman JP, Finnemore VM et al (1994) Tear film lipid layer thickness as a function of blinking. Cornea 13:354–359

    CAS  PubMed  CrossRef  Google Scholar 

  • Kuizenga A, Stolwijk TR, van Agtmaal EJ, van Haeringen NJ, Kijlstra A (1990) Detection of secretory IgM in tears of IgA deficient individuals. Curr Eye Res 9:997–1005

    CAS  PubMed  CrossRef  Google Scholar 

  • Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T (2017) The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm 2017:3908061

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Lam SM, Tong L, Duan X, Petznick A et al (2014a) Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res 55:289–298

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lam SM, Tong L, Reux B, Duan X et al (2014b) Lipidomic analysis of human tear fluid reveals structure-specific lipid alterations in dry eye syndrome. J Lipid Res 55:299–306

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lambert LA, Perri H, Halbrooks PJ, Mason AB (2005) Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp Biochem Physiol B Biochem Mol Biol 142:129–141

    PubMed  CrossRef  CAS  Google Scholar 

  • Lasser C (2015) Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 15:103–117

    PubMed  CrossRef  CAS  Google Scholar 

  • Law RH, Zhang Q, McGowan S, Buckle AM et al (2006) An overview of the serpin superfamily. Genome Biol 7:216

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Lee SH, Oh DH, Jung JY, Kim JC, Jeon CO (2012) Comparative ocular microbial communities in humans with and without blepharitis. Invest Ophthalmol Vis Sci 53:5585–5593

    PubMed  CrossRef  Google Scholar 

  • Lee WY, Wang CJ, Lin TY, Hsiao CL, Luo CW (2013c) CXCL17, an orphan chemokine, acts as a novel angiogenic and anti-inflammatory factor. Am J Physiol Endocrinol Metab 304:E32–E40

    CAS  PubMed  CrossRef  Google Scholar 

  • Lehrer RI, Xu G, Abduragimov A, Dinh NN et al (1998) Lipophilin, a novel heterodimeric protein of human tears. FEBS Lett 432:163–167

    CAS  PubMed  CrossRef  Google Scholar 

  • Lema I, Duran JA (2005) Inflammatory molecules in the tears of patients with keratoconus. Ophthalmology 112:654–659

    PubMed  CrossRef  Google Scholar 

  • Lema I, Brea D, Rodriguez-Gonzalez R, Diez-Feijoo E, Sobrino T (2010) Proteomic analysis of the tear film in patients with keratoconus. Mol Vis 16:2055–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leonardi A (2000) Role of histamine in allergic conjunctivitis. Acta Ophthalmol Scand Suppl 230:18–21

    CrossRef  Google Scholar 

  • Leonardi A (2013) Allergy and allergic mediators in tears. Exp Eye Res 117:106–117

    CAS  PubMed  CrossRef  Google Scholar 

  • Leonardi A, Borghesan F, Faggian D, Depaoli M et al (2000) Tear and serum soluble leukocyte activation markers in conjunctival allergic diseases. Am J Ophthalmol 129:151–158

    CAS  PubMed  CrossRef  Google Scholar 

  • Leonardi A, Jose PJ, Zhan H, Calder VL (2003a) Tear and mucus eotaxin-1 and eotaxin-2 in allergic keratoconjunctivitis. Ophthalmology 110:487–492

    PubMed  CrossRef  Google Scholar 

  • Leonardi A, Sathe S, Bortolotti M, Beaton A, Sack R (2009) Cytokines, matrix metalloproteases, angiogenic and growth factors in tears of normal subjects and vernal keratoconjunctivitis patients. Allergy 64:710–717

    CAS  PubMed  CrossRef  Google Scholar 

  • Leonardi A, Borghesan F, Faggian D, Plebani M (2015) Microarray-based IgE detection in tears of patients with vernal keratoconjunctivitis. Pediatr Allergy Immunol 26:641–645

    PubMed  CrossRef  Google Scholar 

  • Lew M et al (2018) Tear proteins as possible biomarkers for Parkinson’s disease. AAN 70th annual meeting abstract

    Google Scholar 

  • Li DQ, Pflugfelder SC (2005) Matrix metalloproteinases in corneal inflammation. Ocul Surf 3:S198–S202

    PubMed  Google Scholar 

  • Liu J, Shi B, He S, Yao X et al (2010a) Changes to tear cytokines of type 2 diabetic patients with or without retinopathy. Mol Vis 16:2931–2938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luensmann D, Jones L (2012) Protein deposition on contact lenses: the past, the present, and the future. Cont Lens Anterior Eye 35:53–64

    PubMed  CrossRef  Google Scholar 

  • Madej KA (2010) Analysis of meconium, nails and tears for determination of medicines and drugs of abuse. Trends Analy Chem 29:246–259

    CAS  CrossRef  Google Scholar 

  • Magister S, Kos J (2013) Cystatins in immune system. J Cancer 4:45–56

    CAS  PubMed  CrossRef  Google Scholar 

  • Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122

    CAS  PubMed  CrossRef  Google Scholar 

  • Markoulli M, Papas E, Petznick A, Holden B (2011) Validation of the flush method as an alternative to basal or reflex tear collection. Curr Eye Res 36:198–207

    CAS  PubMed  CrossRef  Google Scholar 

  • Markoulli M, Papas E, Cole N, Holden BA (2012) The diurnal variation of matrix metalloproteinase-9 and its associated factors in human tears. Invest Ophthalmol Vis Sci 53:1479–1484

    CAS  PubMed  CrossRef  Google Scholar 

  • Martin XD, Brennan MC (1993) Dopamine and its metabolites in human tears. Eur J Ophthalmol 3:83–88

    CAS  PubMed  CrossRef  Google Scholar 

  • Martin XD, Brennan MC (1994) Serotonin in human tears. Eur J Ophthalmol 4:159–165

    CAS  PubMed  CrossRef  Google Scholar 

  • Martin LB, Kita H, Leiferman KM, Gleich GJ (1996) Eosinophils in allergy: role in disease, degranulation, and cytokines. Int Arch Allergy Immunol 109:207–215

    CAS  PubMed  CrossRef  Google Scholar 

  • Martinez R, Acera A, Soria J, Gonzalez N, Suarez T (2011) Allergic mediators in tear from children with seasonal and perennial allergic conjunctivitis. Arch Soc Esp Oftalmol 86:187–192

    CAS  PubMed  CrossRef  Google Scholar 

  • Masoudi S, Zhong L, Raftery MJ, Stapleton FJ, Willcox MD (2014) Method development for quantification of five tear proteins using selected reaction monitoring (SRM) mass spectrometry. Invest Ophthalmol Vis Sci 55:767–775

    CAS  PubMed  CrossRef  Google Scholar 

  • Maurya RP, Bhushan P, Singh VP, Singh MK et al (2014) Immunoglobulin concentration in tears of contact lens wearers. J Ophthalmic Vis Res 9:320–323

    PubMed  PubMed Central  Google Scholar 

  • Mazoujian G, Pinkus GS, Davis S, Haagensen DE Jr (1983) Immunohistochemistry of a gross cystic disease fluid protein (GCDFP-15) of the breast. a marker of apocrine epithelium and breast carcinomas with apocrine features. Am J Pathol 110:105–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDermott AM (2004) Defensins and other antimicrobial peptides at the ocular surface. Ocul Surf 2:229–247

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • McDermott AM (2013) Antimicrobial compounds in tears. Exp Eye Res 117:53–61

    CAS  PubMed  CrossRef  Google Scholar 

  • McDermott AM, Rich D, Cullor J, Mannis MJ et al (2006) The in vitro activity of selected defensins against an isolate of Pseudomonas in the presence of human tears. Br J Ophthalmol 90:609–611

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • McGill JI, Liakos GM, Goulding N, Seal DV (1984) Normal tear protein profiles and age-related changes. Br J Ophthalmol 68:316–320

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • McKown RL, Wang N, Raab RW, Karnati R et al (2009) Lacritin and other new proteins of the lacrimal functional unit. Exp Eye Res 88:848–858

    CAS  PubMed  CrossRef  Google Scholar 

  • McKown RL, Coleman Frazier EV, Zadrozny KK, Deleault AM et al (2014) A cleavage-potentiated fragment of tear lacritin is bactericidal. J Biol Chem 289:22172–22182

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • McNamara NA, Ge S, Lee SM, Enghauser AM et al (2016) Reduced levels of tear lacritin are associated with corneal neuropathy in patients with the ocular component of sjogren’s syndrome. Invest Ophthalmol Vis Sci 57:5237–5243

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Millar TJ, Mudgil P, Butovich IA, Palaniappan CK (2009) Adsorption of human tear lipocalin to human meibomian lipid films. Invest Ophthalmol Vis Sci 50:140–151

    PubMed  CrossRef  Google Scholar 

  • Mimura T, Usui T, Mori M, Funatsu H et al (2011) Relationship between total tear and serum IgE in allergic conjunctivitis. Int Arch Allergy Immunol 154:349–352

    CAS  PubMed  CrossRef  Google Scholar 

  • Mimura T, Usui T, Yamagami S, Miyai T, Amano S (2012) Relation between total tear IgE and severity of acute seasonal allergic conjunctivitis. Curr Eye Res 37:864–870

    CAS  PubMed  CrossRef  Google Scholar 

  • Molloy MP, Bolis S, Herbert BR, Ou K et al (1997) Establishment of the human reflex tear two-dimensional polyacrylamide gel electrophoresis reference map: new proteins of potential diagnostic value. Electrophoresis 18:2811–2815

    CAS  PubMed  CrossRef  Google Scholar 

  • Montan PG, van Hage-Hamsten M (1996) Eosinophil cationic protein in tears in allergic conjunctivitis. Br J Ophthalmol 80:556–560

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mort JS, Buttle DJ, Cathepsin B (1997) Int J Biochem Cell Biol 29:715–720

    CAS  PubMed  CrossRef  Google Scholar 

  • Mrugacz M, Ostrowska L, Bryl A, Szulc A et al (2017) Pro-inflammatory cytokines associated with clinical severity of dry eye disease of patients with depression. Adv Med Sci 62:338–344

    PubMed  CrossRef  Google Scholar 

  • Mudgil P, Torres M, Millar TJ (2006) Adsorption of lysozyme to phospholipid and meibomian lipid monolayer films. Colloids Surf B Biointerfaces 48:128–137

    CAS  PubMed  CrossRef  Google Scholar 

  • Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    CAS  PubMed  CrossRef  Google Scholar 

  • Nakamura Y, Sotozono C, Kinoshita S (1998) Inflammatory cytokines in normal human tears. Curr Eye Res 17:673–676

    CAS  PubMed  CrossRef  Google Scholar 

  • Nangia-Makker P, Honjo Y, Sarvis R, Akahani S et al (2000) Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 156:899–909

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nevalainen TJ, Aho HJ, Peuravuori H (1994) Secretion of group 2 phospholipase A2 by lacrimal glands. Invest Ophthalmol Vis Sci 35:417–421

    CAS  PubMed  Google Scholar 

  • Ni M, Evans DJ, Hawgood S, Anders EM et al (2005) Surfactant protein D is present in human tear fluid and the cornea and inhibits epithelial cell invasion by Pseudomonas aeruginosa. Infect Immun 73:2147–2156

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nomura K, Takamura E (1998) Tear IgE concentrations in allergic conjunctivitis. Eye (Lond) 12(Pt 2):296–298

    CrossRef  Google Scholar 

  • Oh JW, Shin JC, Jang SJ, Lee HB (1999) Expression of ICAM-1 on conjunctival epithelium and ECP in tears and serum from children with allergic conjunctivitis. Ann Allergy Asthma Immunol 82:579–585

    CAS  PubMed  CrossRef  Google Scholar 

  • Ohashi Y, Motokura M, Kinoshita Y, Mano T et al (1989) Presence of epidermal growth factor in human tears. Invest Ophthalmol Vis Sci 30:1879–1882

    CAS  PubMed  Google Scholar 

  • Ohashi Y, Dogru M, Tsubota K (2006) Laboratory findings in tear fluid analysis. Clin Chim Acta 369:17–28

    CAS  CrossRef  PubMed  Google Scholar 

  • Omali NB, Subbaraman LN, Coles-Brennan C, Fadli Z, Jones LW (2015) Biological and clinical implications of lysozyme deposition on soft contact lenses. Optom Vis Sci 92:750–757

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Park KS, Kim SS, Kim JC, Kim HC et al (2008) Serum and tear levels of nerve growth factor in diabetic retinopathy patients. Am J Ophthalmol 145:432–437

    CAS  PubMed  CrossRef  Google Scholar 

  • Perez-Vilar J, Hill RL (1999) The structure and assembly of secreted mucins. J Biol Chem 274:31751–31754

    CAS  PubMed  CrossRef  Google Scholar 

  • Perumal N, Funke S, Pfeiffer N, Grus FH (2014) Characterization of lacrimal proline-rich protein 4 (PRR4) in human tear proteome. Proteomics 14:1698–1709

    CAS  PubMed  CrossRef  Google Scholar 

  • Perumal N, Funke S, Wolters D, Pfeiffer N, Grus FH (2015) Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4). Proteomics 15:3370–3381

    CAS  PubMed  CrossRef  Google Scholar 

  • Perumal N, Funke S, Pfeiffer N, Grus FH (2016) Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients. Sci Rep 6:29629

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Peuravuori H, Kari O, Peltonen S, Aho VV et al (2004) Group IIA phospholipase A2 content of tears in patients with atopic blepharoconjunctivitis. Graefes Arch Clin Exp Ophthalmol 242:986–989

    CAS  PubMed  CrossRef  Google Scholar 

  • Peuravuori H, Aho VV, Aho HJ, Collan Y, Saari KM (2006) Bactericidal/permeability-increasing protein in lacrimal gland and in tears of healthy subjects. Graefes Arch Clin Exp Ophthalmol 244:143–148

    CAS  PubMed  CrossRef  Google Scholar 

  • Pflugfelder SC, Liu Z, Monroy D, Li DQ et al (2000) Detection of sialomucin complex (MUC4) in human ocular surface epithelium and tear fluid. Invest Ophthalmol Vis Sci 41:1316–1326

    CAS  PubMed  Google Scholar 

  • Pieragostino D, Agnifili L, Cicalini I, Calienno R et al (2017) Tear film steroid profiling in dry eye disease by liquid chromatography tandem mass spectrometry. Int J Mol Sci 18:1349

    PubMed Central  CrossRef  CAS  Google Scholar 

  • Pinazo-Duran MD, Zanon-Moreno V, Lleo-Perez A, Garcia-Medina JJ et al (2016) Genetic systems for a new approach to risk of progression of diabetic retinopathy. Arch Soc Esp Oftalmol 91:209–216

    CAS  PubMed  CrossRef  Google Scholar 

  • Posa A, Paulsen F, Dietz R, Garreis F et al (2017) Quantification of surfactant proteins in tears of patients suffering from dry eye disease compared to healthy subjects. Ann Anat 216:90–94

    PubMed  CrossRef  Google Scholar 

  • Prause JU (1983) Serum albumin, serum antiproteases and polymorphonuclear leucocyte neutral collagenolytic protease in the tear fluid of normal healthy persons. Acta Ophthalmol (Copenh) 61:261–271

    CAS  CrossRef  Google Scholar 

  • Qu XD, Lehrer RI (1998) Secretory phospholipase A2 is the principal bactericide for staphylococci and other gram-positive bacteria in human tears. Infect Immun 66:2791–2797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rantamaki AH, Seppanen-Laakso T, Oresic M, Jauhiainen M, Holopainen JM (2011) Human tear fluid lipidome: from composition to function. PLoS One 6:e19553

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rao K, Farley WJ, Pflugfelder SC (2010) Association between high tear epidermal growth factor levels and corneal subepithelial fibrosis in dry eye conditions. Invest Ophthalmol Vis Sci 51:844–849

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Redl B (2000) Human tear lipocalin. Biochim Biophys Acta 1482:241–248

    CAS  PubMed  CrossRef  Google Scholar 

  • Rohit A, Willcox M, Stapleton F (2013a) Tear lipid layer and contact lens comfort: a review. Eye Contact Lens 39:247–253

    PubMed  CrossRef  Google Scholar 

  • Rohit A, Stapleton F, Brown SH, Mitchell TW, Willcox MD (2014a) Comparison of tear lipid profile among basal, reflex, and flush tear samples. Optom Vis Sci 91:1391–1395

    PubMed  CrossRef  Google Scholar 

  • Rohit A, Willcox MD, Brown SH, Mitchell TW, Stapleton F (2014b) Clinical and biochemical tear lipid parameters in contact lens wearers. Optom Vis Sci 91:1384–1390

    PubMed  CrossRef  Google Scholar 

  • Roth J, Vogl T, Sorg C, Sunderkotter C (2003) Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol 24:155–158

    CAS  PubMed  CrossRef  Google Scholar 

  • Rummenie VT, Matsumoto Y, Dogru M, Wang Y et al (2008) Tear cytokine and ocular surface alterations following brief passive cigarette smoke exposure. Cytokine 43:200–208

    CAS  PubMed  CrossRef  Google Scholar 

  • Runstrom G, Mann A, Tighe B (2013) The fall and rise of tear albumin levels: a multifactorial phenomenon. Ocul Surf 11:165–180

    PubMed  CrossRef  Google Scholar 

  • Russell ST, Zimmerman TP, Domin BA, Tisdale MJ (2004) Induction of lipolysis in vitro and loss of body fat in vivo by zinc-alpha2-glycoprotein. Biochim Biophys Acta 1636:59–68

    CAS  PubMed  CrossRef  Google Scholar 

  • Saari KM, Aine E, Posz A, Klockars M (1983) Lysozyme content of tears in normal subjects and in patients with external eye infections. Graefes Arch Clin Exp Ophthalmol 221:86–88

    CAS  PubMed  CrossRef  Google Scholar 

  • Saari KM, Aho V, Paavilainen V, Nevalainen TJ (2001) Group II PLA(2) content of tears in normal subjects. Invest Ophthalmol Vis Sci 42:318–320

    CAS  PubMed  Google Scholar 

  • Saatci AO, Irkec M, Ozgunes H (1991) Zinc in tears. Ophthalmic Res 23:31–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Sack RA, Tan KO, Tan A (1992) Diurnal tear cycle: evidence for a nocturnal inflammatory constitutive tear fluid. Invest Ophthalmol Vis Sci 33:626–640

    CAS  PubMed  Google Scholar 

  • Saijyothi AV, Fowjana J, Madhumathi S, Rajeshwari M et al (2012) Tear fluid small molecular antioxidants profiling shows lowered glutathione in keratoconus. Exp Eye Res 103:41–46

    CAS  PubMed  CrossRef  Google Scholar 

  • Sakai K, Kino S, Masuda A, Takeuchi M et al (2014) Determination of HEL (Hexanoyl-lysine adduct): a novel biomarker for omega-6 PUFA oxidation. Subcell Biochem 77:61–72

    CAS  PubMed  CrossRef  Google Scholar 

  • Sallenave JM (2010) Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 42:635–643

    CAS  PubMed  CrossRef  Google Scholar 

  • Salvisberg C, Tajouri N, Hainard A, Burkhard PR et al (2014) Exploring the human tear fluid: discovery of new biomarkers in multiple sclerosis. Proteomics Clin Appl 8:185–194

    CAS  PubMed  CrossRef  Google Scholar 

  • Sariri R, Ghafoori H (2008) Tear proteins in health, disease, and contact lens wear. Biochemistry (Mosc) 73:381–392

    CAS  CrossRef  Google Scholar 

  • Sathe S, Sakata M, Beaton AR, Sack RA (1998) Identification, origins and the diurnal role of the principal serine protease inhibitors in human tear fluid. Curr Eye Res 17:348–362

    CAS  PubMed  CrossRef  Google Scholar 

  • Satoh F, Umemura S, Osamura RY (2000) Immunohistochemical analysis of GCDFP-15 and GCDFP-24 in mammary and non-mammary tissue. Breast Cancer 7:49–55

    CAS  PubMed  CrossRef  Google Scholar 

  • Sato-Kuwabara Y, Melo SA, Soares FA, Calin GA (2015) The fusion of two worlds: non-coding RNAs and extracellular vesicles – diagnostic and therapeutic implications (Review). Int J Oncol 46:17–27

    CAS  PubMed  CrossRef  Google Scholar 

  • Saville JT, Zhao Z, Willcox MD, Ariyavidana MA et al (2011) Identification of phospholipids in human meibum by nano-electrospray ionisation tandem mass spectrometry. Exp Eye Res 92:238–240

    CAS  PubMed  CrossRef  Google Scholar 

  • Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125:S41–S52

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Seifert K, Gandia NC, Wilburn JK, Bower KS et al (2012) Tear lacritin levels by age, sex, and time of day in healthy adults. Invest Ophthalmol Vis Sci 53:6610–6616

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Semeraro F, Costagliola C, Cancarini A, Gilberti E et al (2012) Defining reference values of trace elements in the tear film: diagnostic methods and possible applications. Ecotoxicol Environ Saf 80:190–194

    CAS  CrossRef  PubMed  Google Scholar 

  • Sen DK, Sarin GS (1980) Tear glucose levels in normal people and in diabetic patients. Br J Ophthalmol 64:693–695

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sen DK, Sarin GS (1982) Tear lysozyme in lepromatous leprosy. Int J Lepr Other Mycobact Dis 50:322–324

    CAS  PubMed  Google Scholar 

  • Sethu S, Shetty R, Deshpande K, Pahuja N et al (2016) Correlation between tear fluid and serum vitamin D levels. Eye Vis (Lond) 3:22

    CrossRef  Google Scholar 

  • Shetty R, Ghosh A, Lim RR, Subramani M et al (2015) Elevated expression of matrix metalloproteinase-9 and inflammatory cytokines in keratoconus patients is inhibited by cyclosporine A. Invest Ophthalmol Vis Sci 56:738–750

    CAS  PubMed  CrossRef  Google Scholar 

  • Shetty R, Sethu S, Chevour P, Deshpande K et al (2016) Lower vitamin D level and distinct tear cytokine profile were observed in patients with mild dry eye signs but exaggerated symptoms. Transl Vis Sci Technol 5:16

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Shoji J, Kitazawa M, Inada N, Sawa M et al (2003a) Efficacy of tear eosinophil cationic protein level measurement using filter paper for diagnosing allergic conjunctival disorders. Jpn J Ophthalmol 47:64–68

    CAS  PubMed  CrossRef  Google Scholar 

  • Sim RB, Clark H, Hajela K, Mayilyan KR (2006) Collectins and host defence. Novartis Found Symp 279:170–181; discussion 181–176, 216–179

    CAS  PubMed  Google Scholar 

  • Sitaramamma T, Shivaji S, Rao GN (1998) HPLC analysis of closed, open, and reflex eye tear proteins. Indian J Ophthalmol 46:239–245

    CAS  PubMed  Google Scholar 

  • Sobrin L, Liu Z, Monroy DC, Solomon A et al (2000) Regulation of MMP-9 activity in human tear fluid and corneal epithelial culture supernatant. Invest Ophthalmol Vis Sci 41:1703–1709

    CAS  PubMed  Google Scholar 

  • Solomon A, Dursun D, Liu Z, Xie Y et al (2001) Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci 42:2283–2292

    CAS  PubMed  Google Scholar 

  • Song CH, Choi JS, Kim DK, Kim JC (1999) Enhanced secretory group II PLA2 activity in the tears of chronic blepharitis patients. Invest Ophthalmol Vis Sci 40:2744–2748

    CAS  PubMed  Google Scholar 

  • Soria J, Acera A, Merayo LJ, Duran JA et al (2017) Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 7:17478

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Sorkhabi R, Ghorbanihaghjo A, Ghasemi M, Khabazi A, Ahoor M (2013) Lacritin level in tear film of rheumatoid arthritis patients. IRJO 25:284–287

    Google Scholar 

  • Spurr-Michaud S, Argueso P, Gipson I (2007) Assay of mucins in human tear fluid. Exp Eye Res 84:939–950

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Steele PS, Jumblatt MM, Smith NB, Pierce WM (2002) Detection of histatin 5 in normal human schirmer strip samples by mass spectroscopy. Invest Ophth Vis Sci 43:98–98

    Google Scholar 

  • Tabbara KF (2001) Tear tryptase in vernal keratoconjunctivitis. Arch Ophthalmol 119:338–342

    CAS  PubMed  CrossRef  Google Scholar 

  • Takenaka Y, Fukumori T, Raz A (2002) Galectin-3 and metastasis. Glycoconj J 19:543–549

    CAS  PubMed  CrossRef  Google Scholar 

  • Tanida I, Ueno T, Kominami E (2008) LC3 and Autophagy. Methods Mol Biol 445:77–88

    CAS  PubMed  CrossRef  Google Scholar 

  • Tchah H (1989) Measurement of IgA level in normal human tears by enzyme-linked immunosorbent assay. Korean J Ophthalmol 3:70–74

    CAS  PubMed  CrossRef  Google Scholar 

  • Tiffany JM (2003) Tears in health and disease. Eye (Lond) 17:923–926

    CAS  CrossRef  Google Scholar 

  • Tuft SJ, Dart JK (1989) The measurement of IgE in tear fluid: a comparison of collection by sponge or capillary. Acta Ophthalmol (Copenh) 67:301–305

    CAS  CrossRef  Google Scholar 

  • Ubels JL, MacRae SM (1984) Vitamin A is present as retinol in the tears of humans and rabbits. Curr Eye Res 3:815–822

    CAS  PubMed  CrossRef  Google Scholar 

  • Uchino Y, Uchino M, Yokoi N, Dogru M et al (2014) Alteration of tear mucin 5AC in office workers using visual display terminals: the Osaka Study. JAMA Ophthalmol 132:985–992

    PubMed  CrossRef  Google Scholar 

  • Uchino Y, Mauris J, Woodward AM, Dieckow J et al (2015) Alteration of galectin-3 in tears of patients with dry eye disease. Am J Ophthalmol 159:1027–1035. e1023

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Uchino Y, Uchino M, Yokoi N, Dogru M et al (2016) Impact of cigarette smoking on tear function and correlation between conjunctival goblet cells and tear MUC5AC concentration in office workers. Sci Rep 6:27699

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705

    PubMed  CrossRef  CAS  Google Scholar 

  • van Setten GB, Stephens R, Tervo T, Salonen EM et al (1990) Effects of the Schirmer test on the fibrinolytic system in the tear fluid. Exp Eye Res 50:135–141

    PubMed  CrossRef  Google Scholar 

  • Velez VF, Romano JA, McKown RL, Green K et al (2013) Tissue transglutaminase is a negative regulator of monomeric lacritin bioactivity. Invest Ophthalmol Vis Sci 54:2123–2132

    CrossRef  CAS  Google Scholar 

  • Venkata SJ, Narayanasamy A, Srinivasan V, Iyer GK et al (2009) Tear ascorbic acid levels and the total antioxidant status in contact lens wearers: a pilot study. Indian J Ophthalmol 57:289–292

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Venza I, Visalli M, Ceci G, Teti D (2004) Quantitative determination of histamine in tears during conjunctivitis by a novel HPLC method. Ophthalmic Res 36:62–69

    CAS  PubMed  CrossRef  Google Scholar 

  • Verma M, Lam TK, Hebert E, Divi RL (2015) Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clin Pathol 15:6

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Versura P, Bavelloni A, Blalock W, Fresina M, Campos EC (2012) A rapid standardized quantitative microfluidic system approach for evaluating human tear proteins. Mol Vis 18:2526–2537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Versura P, Bavelloni A, Grillini M, Fresina M, Campos EC (2013a) Diagnostic performance of a tear protein panel in early dry eye. Mol Vis 19:1247–1257

    PubMed  PubMed Central  Google Scholar 

  • Vogel HJ (2012) Lactoferrin, a bird’s eye view. Biochem Cell Biol 90:233–244

    CAS  PubMed  CrossRef  Google Scholar 

  • Wakamatsu TH, Satake Y, Igarashi A, Dogru M et al (2012) IgE and eosinophil cationic protein (ECP) as markers of severity in the diagnosis of atopic keratoconjunctivitis. Br J Ophthalmol 96:581–586

    PubMed  CrossRef  Google Scholar 

  • Weber JA, Baxter DH, Zhang S, Huang DY et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wei Y, Gadaria-Rathod N, Epstein S, Asbell P (2013) Tear cytokine profile as a noninvasive biomarker of inflammation for ocular surface diseases: standard operating procedures. Invest Ophthalmol Vis Sci 54:8327–8336

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wilkinson RD, Williams R, Scott CJ, Burden RE (2015) Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biol Chem 396:867–882

    CAS  PubMed  CrossRef  Google Scholar 

  • Willcox MD, Morris CA, Thakur A, Sack RA et al (1997) Complement and complement regulatory proteins in human tears. Invest Ophthalmol Vis Sci 38:1–8

    CAS  PubMed  Google Scholar 

  • Winiarczyk M, Kaarniranta K, Winiarczyk S, Adaszek L et al (2018) Tear film proteome in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 256:1127–1139

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wizert A, Iskander DR, Cwiklik L (2017) Interaction of lysozyme with a tear film lipid layer model: A molecular dynamics simulation study. Biochim Biophys Acta 1859:2289–2296

    CAS  CrossRef  Google Scholar 

  • Yamada M, Mochizuki H, Kawai M, Tsubota K, Bryce TJ (2005) Decreased tear lipocalin concentration in patients with meibomian gland dysfunction. Br J Ophthalmol 89:803–805

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yamada M, Mochizuki H, Kawashima M, Hata S (2006) Phospholipids and their degrading enzyme in the tears of soft contact lens wearers. Cornea 25:S68–S72

    PubMed  CrossRef  Google Scholar 

  • Yamamoto GK, Allansmith MR (1979) Complement in tears from normal humans. Am J Ophthalmol 88:758–763

    CAS  PubMed  CrossRef  Google Scholar 

  • Yasueda S, Yamakawa K, Nakanishi Y, Kinoshita M, Kakehi K (2005) Decreased mucin concentrations in tear fluids of contact lens wearers. J Pharm Biomed Anal 39:187–195

    CAS  PubMed  CrossRef  Google Scholar 

  • Yoon KC, Park CS, You IC, Choi HJ et al (2010) Expression of CXCL9, -10, -11, and CXCR3 in the tear film and ocular surface of patients with dry eye syndrome. Invest Ophthalmol Vis Sci 51:643–650

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • You J, Fitzgerald A, Cozzi PJ, Zhao Z et al (2010) Post-translation modification of proteins in tears. Electrophoresis 31:1853–1861

    CAS  PubMed  CrossRef  Google Scholar 

  • You J, Willcox M, Fitzgerald A, Schiller B et al (2016a) Absolute quantification of human tear lactoferrin using multiple reaction monitoring technique with stable-isotopic labeling. Anal Biochem 496:30–34

    CAS  PubMed  CrossRef  Google Scholar 

  • Yu L, Chen X, Qin G, Xie H, Lv P (2008) Tear film function in type 2 diabetic patients with retinopathy. Ophthalmologica 222:284–291

    PubMed  CrossRef  Google Scholar 

  • Yusifov TN, Abduragimov AR, Gasymov OK, Glasgow BJ (2000) Endonuclease activity in lipocalins. Biochem J 347(Pt 3):815–819

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yusifov TN, Abduragimov AR, Narsinh K, Gasymov OK, Glasgow BJ (2008) Tear lipocalin is the major endonuclease in tears. Mol Vis 14:180–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi MR, Merlino G (2011) The two faces of interferon-gamma in cancer. Clin Cancer Res 17:6118–6124

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45:27–37

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhao H, Jumblatt JE, Wood TO, Jumblatt MM (2001) Quantification of MUC5AC protein in human tears. Cornea 20:873–877

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhao Z, Liu J, Shi B, He S et al (2010) Advanced glycation end product (AGE) modified proteins in tears of diabetic patients. Mol Vis 16:1576–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Huang LQ, Beuerman RW, Grigg ME et al (2004) Proteomic analysis of human tears: defensin expression after ocular surface surgery. J Proteome Res 3:410–416

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhou L, Beuerman RW, Ang LP, Chan CM et al (2009) Elevation of human alpha-defensins and S100 calcium-binding proteins A8 and A9 in tear fluid of patients with pterygium. Invest Ophthalmol Vis Sci 50:2077–2086

    PubMed  CrossRef  Google Scholar 

  • Zhou L, Zhao SZ, Koh SK, Chen L et al (2012) In-depth analysis of the human tear proteome. J Proteomics 75:3877–3885

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Prashar, A. (2019). Tear Cocktail: Composition of Tears. In: Shed Tears for Diagnostics. Springer, Singapore. https://doi.org/10.1007/978-981-13-7169-1_4

Download citation