Skip to main content

Genetics in Cataracts

  • Chapter
  • First Online:
Genetics of Eye Diseases
  • 382 Accesses

Abstract

A cataract is a lens opacity, which can develop at any stage of life from infancy to late adulthood. According to the age at onset, cataracts may be congenital or infantile (at birth or within 1 year of life), juvenile (in childhood or adolescence), presenile (in adulthood, before 45 years of age), or senile (after 45 years of age).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison PK, Berry V, Holden KR, Espinal D, Rivera B, Su H, et al. A novel mutation in the connexin 46 gene (GJA3) causes autosomal dominant zonular pulverulent cataract in a hispanic family. Mol Vis. 2006;12:791–5.

    CAS  PubMed  Google Scholar 

  • Al-Fadhli S, Abdelmoaty S, Al-Hajeri A, Behbehani A, Alkuraya F. Novel crystallin gamma B mutations in a Kuwaiti family with autosomal dominant congenital cataracts reveal genetic and clinical heterogeneity. Mol Vis. 2012;18:2931–6.

    CAS  Google Scholar 

  • Anand D, Agrawal SA, Slavotinek A, Lachke SA. Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects. Hum Mutat. 2018;39:471–94. https://doi.org/10.1002/humu.23395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora A, Minogue PJ, Liu X, Reddy MA, Ainsworth JR, Bhattacharya SS, et al. A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract: further evidence for gap junction dysfunction in human cataract. J Med Genet. 2006;43:e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora A, Minogue PJ, Liu X, Addison PK, Russel-Eggitt I, Webster AR, et al. A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. J Med Genet. 2008;45:155–60.

    Article  CAS  PubMed  Google Scholar 

  • Basti S, Hejtmancik JF, Padma T, Ayyagari R, Kaiser-Kupfer MI, Murty JS, et al. Autosomal dominant zonular cataract with sutural opacities in a four-generation family. Am J Ophthalmol. 1996;121:162–8.

    Article  CAS  PubMed  Google Scholar 

  • Bateman JB, Geyer DD, Flodman P, Johannes M, Sikela J, Walter N, et al. A new betaA1-crystallin splice junction mutation in autosomal dominant cataract. Invest Ophthalmol Vis Sci. 2000;41:3278–85.

    CAS  PubMed  Google Scholar 

  • Bateman JB, von Bischhoffshaunsen FR, Richter L, Flodman P, Burch D, Spence MA. Gene conversion mutation in crystallin, beta-B2 (CRYBB2) in a Chilean family with autosomal dominant cataract. Ophthalmology. 2007;114:425–32.

    Article  PubMed  Google Scholar 

  • Beby F, Commeaux C, Bozon M, Denis P, Edery P, Morlé L. New phenotype associated with an Arg116Cys mutation in the CRYAA gene: nuclear cataract, iris coloboma, and microphthalmia. Arch Ophthalmol. 2007;125:213–6.

    Article  CAS  PubMed  Google Scholar 

  • Bennett TM, Mackay DS, Knopf HL, Shiels A. A novel missense mutation in the gene for gap-junction protein alpha3 (GJA3) associated with autosomal dominant “nuclear punctate” cataracts linked to chromosome 13q. Mol Vis. 2004;10:376–82.

    CAS  PubMed  Google Scholar 

  • Berry V, Mackay D, Khaliq S, Francis PJ, Hameed A, Anwar K, et al. Connexin 50 mutation in a family with congenital “zonular nuclear” pulverulent cataract of Pakistani origin. Hum Genet. 1999;105:168–70.

    Article  CAS  PubMed  Google Scholar 

  • Berry V, Francis P, Reddy MA, Collyer D, Vithana E, MacKay D, et al. Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans. Am J Hum Genet. 2001;69:1141–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billingsley G, Santhiya ST, Paterson AD, Ogata K, Wodak S, Hosseini SM, et al. CRYBA4, a novel human cataract gene, is also involved in microphthalmia. Am J Hum Genet. 2006;79:702–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brakenhoff RH, Henskens HA, van Rossum MW, Lubsen NH, Schoenmakers JG. Activation of the gamma E-crystallin pseudogene in the human hereditary Coppock-like cataract. Hum Mol Genet. 1994;3:279–83.

    Article  CAS  PubMed  Google Scholar 

  • Burdon KP, Wirth MG, Mackey DA, Russell-Eggitt IM, Craig JE, Elder JE, et al. Investigation of crystallin genes in familial cataract, and report of two disease associated mutations. Br J Ophthalmol. 2004a;88:79–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdon KP, Wirth MG, Mackey DA, Russell-Eggitt IM, Craig JE, Elder JE, et al. A novel mutation in the Connexin 46 gene causes autosomal dominant congenital cataract with incomplete penetrance. J Med Genet. 2004b;41(8):e106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers C, Russell P. Deletion mutation in an eye lens beta-crystallin. An animal model for inherited cataracts. J Biol Chem. 1991;266:6742–6.

    CAS  PubMed  Google Scholar 

  • Chen C, Sun Q, Gu M, Liu K, Sun Y, Xu X. A novel Cx50 (GJA8) p.H277Y mutation associated with autosomal dominant congenital cataract identified with targeted next-generation sequencing. Graefes Arch Clin Exp Ophthalmol. 2015;253:915–24.

    Article  CAS  PubMed  Google Scholar 

  • Devi RR, Vijayalakshmi P. Novel mutations in GJA8 associated with autosomal dominant congenital cataract and microcornea. Mol Vis. 2006;12:190–5.

    CAS  PubMed  Google Scholar 

  • Devi RR, Reena C, Vijayalakshmi P. Novel mutations in GJA3 associated with autosomal dominant congenital cataract in the Indian population. Mol Vis. 2005;11:846–52.

    CAS  PubMed  Google Scholar 

  • Devi RR, Yao W, Vijayalakshmi P, Sergeev YV, Sundaresan P, Hejtmancik JF. Crystallin gene mutations in Indian families with inherited pediatric cataract. Mol Vis. 2008;14:1157–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding X, Wang B, Luo Y, Hu S, Zhou G, Zhou Z, et al. A novel mutation in the connexin 46 (GJA3) gene associated with congenital cataract in a Chinese pedigree. Mol Vis. 2011;17:1343–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckstein M, Vijayalakshmi P, Killedar M, Gilbert C, Foster A. Aetiology of childhood cataract in South India. Br J Ophthalmol. 1996;80:628–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans P, Wyatt K, Wistow GJ, Bateman OA, Wallace BA, Slingsby C. The P23T cataract mutation causes loss of solubility of folded gamma D-crystallin. J Mol Biol. 2004;343:435–44.

    Article  CAS  PubMed  Google Scholar 

  • Ferrini W, Schorderet DF, Othenin-Girard P, Uffer S, Héon E, Munier FL. CRYBA3/A1 gene mutation associated with suture-sparing autosomal dominant congenital nuclear cataract: a novel phenotype. Invest Ophthalmol Vis Sci. 2004;45:1436–41.

    Article  PubMed  Google Scholar 

  • Gao X, Cheng J, Lu C, Li X, Li F, Liu C, et al. A novel mutation in the connexin 50 gene (GJA8) associated with autosomal dominant congenital nuclear cataract in a Chinese family. Curr Eye Res. 2010;35:597–604.

    Article  CAS  PubMed  Google Scholar 

  • Ge XL, Zhang Y, Wu Y, Lv J, Zhang W, Jin ZB, et al. Identification of a novel GJA8 (Cx50) point mutation causes human dominant congenital cataracts. Sci Rep. 2014;4:4121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill D, Klose R, Munier FL, McFadden M, Priston M, Billingsley G, et al. Genetic heterogeneity of the Coppock-like cataract: a mutation in CRYBB2 on chromosome 22q11.2. Invest Ophthalmol Vis Sci. 2000;41:159–65.

    CAS  PubMed  Google Scholar 

  • Gillespie RL, O’Sullivan J, Ashworth J, Bhaskar S, Williams S, Biswas S, et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology. 2014;121:2124–37. https://doi.org/10.1016/j.ophtha.2014.06.006.

    Article  PubMed  Google Scholar 

  • Gonzalez-Huerta LM, Messina-Baas OM, Cuevas-Covarrubias SA. A family with autosomal dominant primary congenital cataract associated with a CRYGC mutation: evidence of clinical heterogeneity. Mol Vis. 2007;13:1333–8.

    CAS  PubMed  Google Scholar 

  • Gu J, Qi Y, Wang L, Wang J, Shi L, Lin H, et al. A new congenital nuclear cataract caused by a missense mutation in the gammaD-crystallin gene (CRYGD) in a Chinese family. Mol Vis. 2005;11:971–6.

    CAS  PubMed  Google Scholar 

  • Gu Z, Ji B, Wan C, He G, Zhang J, Zhang M, et al. A splice site mutation in CRYBA1/A3 causing autosomal dominant posterior polar cataract in a Chinese pedigree. Mol Vis. 2010;16:154–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guleria K, Sperling K, Singh D, Varon R, Singh JR, Vanita V. A novel mutation in the connexin 46 (GJA3) gene associated with autosomal dominant congenital cataract in an Indian family. Mol Vis. 2007a;13:1657–65.

    CAS  PubMed  Google Scholar 

  • Guleria K, Vanita V, Singh D, Singh JR. A novel “pearl box” cataract associated with a mutation in the connexin 46 (GJA3) gene. Mol Vis. 2007b;13:797–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Su D, Li Q, Yang Z, Ma Z, Ma X, et al. A nonsense mutation of CRYGC associated with autosomal dominant congenital nuclear cataracts and microcornea in a Chinese pedigree. Mol Vis. 2012;18:1874–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen L, Yao W, Eiberg H, Funding M, Riise R, Kjaer KW, et al. The congenital “ant-egg” cataract phenotype is caused by a missense mutation in connexin 46. Mol Vis. 2006;12:1033–9.

    CAS  PubMed  Google Scholar 

  • Hansen L, Yao W, Eiberg H, Kjaer KW, Baggesen K, Hejtmancik JF, et al. Genetic heterogeneity in microcornea-cataract: five novel mutations in CRYAA, CRYGD, and GJA8. Invest Ophthalmol Vis Sci. 2007;48:3937–44.

    Article  PubMed  Google Scholar 

  • Hejtmancik JF, Riazuddin SA, McGreal R, Liu W, Cvekl A, Shiels A. Lens biology and biochemistry. Prog Mol Biol Transl Sci. 2015;134:169–201. https://doi.org/10.1016/bs.pmbts.2015.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Héon E, Priston M, Schorderet DF, Billingsley GD, Girard PO, Lubsen N, et al. The gamma-crystallins and human cataracts: a puzzle made clearer. Am J Hum Genet. 1999;65:1261–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu S, Wang B, Zhou Z, Zhou G, Wang J, Ma X, et al. A novel mutation in GJA8 causing congenital cataract-microcornea syndrome in a Chinese pedigree. Mol Vis. 2010;16:1585–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Gao L, Feng Y, Yang T, Huang S, Shao Z, et al. Identification of a novel mutation of the gene for gap junction protein α3 (GJA3) in a Chinese family with congenital cataract. Mol Biol Rep. 2014;41(7):4753–8.

    Article  CAS  PubMed  Google Scholar 

  • Irum B, Khan SY, Ali M, Kaul H, Kabir F, Rauf B, et al. Mutation in LIM2 is responsible for autosomal recessive congenital cataracts. PLoS One. 2016;11:e0162620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamieson RV, Perveen R, Kerr B, Carette M, Yardley J, Heon E, et al. Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum Mol Genet. 2002;11:33–42.

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Jin Y, Bu L, Zhang W, Liu J, Cui B, et al. A novel mutation in GJA3 (connexin46) for autosomal dominant congenital nuclear pulverulent cataract. Mol Vis. 2003;9:579–83.

    CAS  PubMed  Google Scholar 

  • Kannabiran C, Rogan PK, Olmos L, Basti S, Rao GN, Kaiser-Kupfer M, Hejtmancik JF. Autosomal dominant zonular cataract with sutural opacities is associated with a splice mutation in the betaA3/A1-crystallin gene. Mol Vis. 1998;4:21.

    CAS  PubMed  Google Scholar 

  • Kerscher S, Glenister PH, Favor J, Lyon MF. Two new cataract loci, Ccw and To3, and further mapping of the Npp and Opj cataracts in the mouse. Genomics. 1996;36:17–21.

    Article  CAS  PubMed  Google Scholar 

  • Khan AO, Aldahmesh MA, Mohamed JY, Alkuraya FS. Clinical and molecular analysis of children with central pulverulent cataract from the Arabian Peninsula. Br J Ophthalmol. 2012;96:650–5. https://doi.org/10.1136/bjophthalmol-2011-301053.

    Article  PubMed  Google Scholar 

  • Khan AO, Aldahmesh MA, Alkuraya FS. Phenotypes of recessive Pediatric cataract in a cohort of children with identified homozygous gene mutations (an American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc. 2015;113:T7.

    PubMed  PubMed Central  Google Scholar 

  • Kistler J, Kirkland B, Bullivant S. Identification of a 70,000-D protein in lens membrane junctional domains. J Cell Biol. 1985;101:28–35.

    Article  CAS  PubMed  Google Scholar 

  • Kmoch S, Brynda J, Asfaw B, Bezouska K, Novák P, Rezácová P, et al. Link between a novel human gammaD-crystallin allele and a unique cataract phenotype explained by protein crystallography. Hum Mol Genet. 2000;9:1779–86.

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Saitsu H, Miyamoto T, Lee BJ, Nishiyama K, Nakashima M, et al. Pathogenic mutations in two families with congenital cataract identified with whole-exome sequencing. Mol Vis. 2013;19:384–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer P, Yount J, Mitchell T, LaMorticella D, Carrero-Valenzuela R, Lovrien E, et al. A second gene for cerulean cataracts maps to the beta crystallin region on chromosome 22. Genomics. 1996;35:539–42.

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Agarwal T, Khokhar S, Kumar M, Kaur P, Roy TS, et al. Mutation screening and genotype phenotype correlation of α-crystallin, γ-crystallin and GJA8 gene in congenital cataract. Mol Vis. 2011;17:693–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Agarwal T, Kaur P, Kumar M, Khokhar S, Dada R. Molecular and structural analysis of genetic variations in congenital cataract. Mol Vis. 2013;19:2346–50.

    Google Scholar 

  • Li Y, Wang J, Dong B, Man H. A novel connexin 46 (GJA3) mutation in autosomal dominant congenital nuclear pulverulent cataract. Mol Vis. 2004;10:668–71.

    CAS  PubMed  Google Scholar 

  • Li FF, Zhu SQ, Wang SZ, Gao C, Huang SZ, Zhang M, et al. Nonsense mutation in the CRYBB2 gene causing autosomal dominant progressive polymorphic congenital coronary cataracts. Mol Vis. 2008;14:750–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang Q, Fu Q, Zhu Y, Zhai Y, Yu Y, et al. A novel connexin 50 gene (gap junction protein, alpha 8) mutation associated with congenital nuclear and zonular pulverulent cataract. Mol Vis. 2013;19:767–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Wang S, Ye H, Tang Y, Qiu X, Fan Q, et al. Distribution of gene mutations in sporadic congenital cataract in a Han Chinese population. Mol Vis. 2016;22:589–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litt M, Carrero-Valenzuela R, LaMorticella DM, Schultz DW, Mitchell TN, Kramer P, et al. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin gene CRYBB2. Hum Mol Genet. 1997;6:665–8.

    Article  CAS  PubMed  Google Scholar 

  • Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet. 1998;7:471–4.

    Article  CAS  PubMed  Google Scholar 

  • Lubsen NH, Renwick JH, Tsui LC, Breitman ML, Schoenmakers JG. A locus for a human hereditary cataract is closely linked to the gamma-crystallin gene family. Proc Natl Acad Sci U S A. 1987;84:489–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon MF, Jamieson RV, Perveen R, Glenister PH, Griffiths R, Boyd Y, et al. A dominant mutation within the DNA-binding domain of the bZIP transcription factor Maf causes murine cataract and results in selective alteration in DNA binding. Hum Mol Genet. 2003;12:585–94.

    Article  CAS  PubMed  Google Scholar 

  • Ma ZW, Zheng JQ, Li J, Li XR, Tang X, Yuan XY, et al. Two novel mutations of connexin genes in Chinese families with autosomal dominant congenital nuclear cataract. Br J Ophthalmol. 2005;89:1535–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Yao W, Chan CC, Kannabiran C, Wawrousek E, Hejtmancik JF. Human βA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells. Biochim Biophys Acta. 2016;1862:1214–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay D, Ionides A, Kibar Z, Rouleau G, Berry V, Moore A, et al. Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet. 1999;64:1357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay DS, Boskovska OB, Knopf HL, Lampi KJ, Shiels A. A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q. Am J Hum Genet. 2002;71:1216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay DS, Bennett TM, Culican SM, Shiels A. Exome sequencing identifies novel and recurrent mutations in GJA8 and CRYGD associated with inherited cataract. Hum Genomics. 2014;8:19. https://doi.org/10.1186/s40246-014-0019-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathias RT, White TW, Gong X. Lens gap junctions in growth, differentiation, and homeostasis. Physiol Rev. 2010;90:179–206.

    Article  CAS  PubMed  Google Scholar 

  • Meyer E, Rahman F, Owens J, Pasha S, Morgan NV, Trembath RC, et al. Initiation codon mutation in betaB1-crystallin (CRYBB1) associated with autosomal recessive nuclear pulverulent cataract. Mol Vis. 2009;15:1014–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Min HY, Qiao PP, Asan, Yan ZH, Jiang HF, Zhu YP, et al. Targeted genes sequencing identified a novel 15 bp deletion on GJA8 in a Chinese family with autosomal dominant congenital cataracts. Chin Med J. 2016;129:860–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Russell P, Carper DA, Inana G, Kinoshita JH. Alteration of a developmentally regulated, heat-stable polypeptide in the lens of the Philly mouse. Implications for cataract formation. J Biol Chem. 1988;263:19218–21.

    CAS  PubMed  Google Scholar 

  • Ogino H, Yasuda K. Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science. 1998;280:115–8.

    Article  CAS  PubMed  Google Scholar 

  • Padma T, Ayyagari R, Murty JS, Basti S, Fletcher T, Rao GN, et al. Autosomal dominant zonular cataract with sutural opacities localized to chromosome 17q11-12. Am J Hum Genet. 1995;57:840–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel N, Anand D, Monies D, Maddirevula S, Khan AO, Algoufi T, et al. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet. 2017;136(2):205–25.

    Article  CAS  PubMed  Google Scholar 

  • Perveen R, Favor J, Jamieson RV, Ray DW, Black GC. A heterozygous c-Maf transactivation domain mutation causes congenital cataract and enhances target gene activation. Hum Mol Genet. 2007;16:1030–8.

    Article  CAS  PubMed  Google Scholar 

  • Ponnam SP, Ramesha K, Tejwani S, Ramamurthy B, Kannabiran C. Mutation of the gap junction protein alpha 8 (GJA8) gene causes autosomal recessive cataract. J Med Genet. 2007;44:e85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponnam SP, Ramesha K, Tejwani S, Matalia J, Kannabiran C. A missense mutation in LIM2 causes autosomal recessive congenital cataract. Mol Vis. 2008;14:1204–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ponnam SP, Ramesha K, Matalia J, Tejwani S, Ramamurthy B, Kannabiran C. Mutational screening of Indian families with hereditary congenital cataract. Mol Vis. 2013;19:1141–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pras E, Frydman M, Levy-Nissenbaum E, Bakhan T, Raz J, Assia EI, et al. A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Invest Ophthalmol Vis Sci. 2000;41:3511–5.

    CAS  PubMed  Google Scholar 

  • Pras E, Levy-Nissenbaum E, Bakhan T, Lahat H, Assia E, Geffen-Carmi N, et al. A missense mutation in the LIM2 gene is associated with autosomal recessive presenile cataract in an inbred Iraqi Jewish family. Am J Hum Genet. 2002;70:1363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MA, Bateman OA, Chakarova C, Ferris J, Berry V, Lomas E, et al. Characterization of the G91del CRYBA1/3-crystallin protein: a cause of human inherited cataract. Hum Mol Genet. 2004;13:945–53.

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Watts P, Fenton I, Clarke A, Snell RG, Owen MJ, et al. Further evidence of autosomal dominant congenital zonular pulverulent cataracts linked to 13q11 (CZP3) and a novel mutation in connexin 46 (GJA3). Hum Genet. 2000;106:206–9.

    Article  CAS  PubMed  Google Scholar 

  • Reis LM, Tyler RC, Muheisen S, Raggio V, Salviati L, Han DP, et al. Whole exome sequencing in dominant cataract identifies a new causative factor, CRYBA2, and a variety of novel alleles in known genes. Hum Genet. 2013;132:761–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Z, Li A, Shastry BS, Padma T, Ayyagari R, Scott MH, et al. A 5-base insertion in the gamma C-crystallin gene is associated with autosomal dominant variable zonular pulverulent cataract. Hum Genet. 2000;106:531–7.

    CAS  PubMed  Google Scholar 

  • Richter L, Flodman P, Barria von Bischhoffshausen F, Burch D, Brown S, Nguyen L, et al. Clinical variability of autosomal dominant cataract, microcornea and corneal opacity and novel mutation in the alpha A crystallin gene (CRYAA). Am J Med Genet A. 2008;146A(7):833–42.

    Article  CAS  PubMed  Google Scholar 

  • Ring BZ, Cordes SP, Overbeek PA, Barsh GS. Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development. 2000;127:307–17.

    CAS  PubMed  Google Scholar 

  • Santhiya ST, Shyam Manohar M, Rawlley D, Vijayalakshmi P, Namperumalsamy P, Gopinath PM, et al. Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts. J Med Genet. 2002;39:352–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhiya ST, Kumar GS, Sudhakar P, Gupta N, Klopp N, Illig T, et al. Molecular analysis of cataract families in India: new mutations in the CRYBB2 and GJA3 genes and rare polymorphisms. Mol Vis. 2010;16:1837–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt W, Klopp N, Illig T, Graw J. A novel GJA8 mutation causing a recessive triangular cataract. Mol Vis. 2008;14:851–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiels A, Hejtmancik JF. Molecular genetics of cataract. Prog Mol Biol Transl Sci. 2015;134:203–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiels A, Mackay D, Ionides A, Berry V, Moore A, Bhattacharya S. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am J Hum Genet. 1998;62:526–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha D, Esumi N, Jaworski C, Kozak CA, Pierce E, Wistow G. Cloning and mapping the mouse Crygs gene and non-lens expression of [gamma]S-crystallin. Mol Vis. 1998;4:8.

    CAS  PubMed  Google Scholar 

  • Steele EC Jr, Kerscher S, Lyon MF, Glenister PH, Favor J, Wang J, et al. Identification of a mutation in the MP19 gene, Lim2, in the cataractous mouse mutant To3. Mol Vis. 1997;3:5.

    PubMed  Google Scholar 

  • Stephan DA, Gillanders E, Vanderveen D, Freas-Lutz D, Wistow G, Baxevanis AD, et al. Progressive juvenile-onset punctate cataracts caused by mutation of the gamma D-crystallin gene. Proc Natl Acad Sci. 1999;96:1008–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su D, Yang Z, Li Q, Guan L, Zhang H, Dandon E, et al. Identification and functional analysis of GJA8 mutation in a Chinese family with autosomal dominant perinuclear cataracts. PLoS One. 2013;8:e59926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Ma Z, Li Y, Liu B, Li Z, Ding X, et al. Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans. J Med Genet. 2005;42:706–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Xiao X, Li S, Guo X, Zhang Q. Mutation analysis of 12 genes in Chinese families with congenital cataracts. Mol Vis. 2011;17:2197–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Zhou Q, Li H, Yang L, Wu S, Sui R. Mutations in crystallin genes result in congenital cataract associated with other ocular abnormalities. Mol Vis. 2017;23:977–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanita, Sarhadi V, Reis A, Jung M, Singh D, Sperling K, et al. A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and its pseudogene. J Med Genet. 2001;38:392–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanita V, Singh JR, Hejtmancik JF, Nuernberg P, Hennies HC, Singh D, et al. A novel fan-shaped cataract-microcornea syndrome caused by a mutation of CRYAA in an Indian family. Mol Vis. 2006a;12:518–22.

    CAS  PubMed  Google Scholar 

  • Vanita V, Hennies HC, Singh D, Nürnberg P, Sperling K, Singh JR. A novel mutation in GJA8 associated with autosomal dominant congenital cataract in a family of Indian origin. Mol Vis. 2006b;12:1217–22.

    CAS  PubMed  Google Scholar 

  • Vanita V, Singh JR, Singh D, Varon R, Sperling K. A novel mutation in GJA8 associated with jellyfish-like cataract in a family of Indian origin. Mol Vis. 2008a;14:323–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanita V, Singh JR, Singh D, Varon R, Sperling K. A mutation in GJA8 (p.P88Q) is associated with “balloon-like” cataract with Y-sutural opacities in a family of Indian origin. Mol Vis. 2008b;14:1171–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanita V, Singh JR, Singh D, Varon R, Sperling K. Novel mutation in the gamma-S crystallin gene causing autosomal dominant cataract. Mol Vis. 2009;15:476–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vicart P, Caron A, Guicheney P, Li Z, Prévost MC, Faure A, et al. A missense mutation in the alpha B-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet. 1998;20:92–5.

    Article  CAS  PubMed  Google Scholar 

  • Wang KJ, Zhu SQ. A novel p.F206I mutation in Cx46 associated with autosomal dominant congenital cataract. Mol Vis. 2012;18:968–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Wang B, Wang J, Zhou S, Yun B, Suo P, et al. A novel GJA8 mutation (p.I31T) causing autosomal dominant congenital cataract in a Chinese family. Mol Vis. 2009;15:2813–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KJ, Wang BB, Zhang F, Zhao Y, Ma X, Zhu SQ. Novel beta-crystallin gene mutations in Chinese families with nuclear cataracts. Arch Ophthalmol. 2011;129:337–43.

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Wang KJ, Zhu SQ, Wang J, Ma X. Identification of the p. R116H mutation in a Chinese family with novel variable cataract phenotype: evidence for a mutational hot spot in αA-crystallin gene. Ophthalmic Genet. 2012;33:134–8.

    Article  CAS  PubMed  Google Scholar 

  • Willoughby CE, Shafiq A, Ferrini W, Chan LL, Billingsley G, Priston M, et al. CRYBB1 mutation associated with congenital cataract and microcornea. Mol Vis. 2005;11:587–93.

    CAS  PubMed  Google Scholar 

  • Yan M, Xiong C, Ye SQ, Chen Y, Ke M, Zheng F, et al. A novel connexin 50 (GJA8) mutation in a Chinese family with a dominant congenital pulverulent nuclear cataract. Mol Vis. 2008;14:418–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Xing B, Liu G, Lu X, Gia X, Lu X, et al. A novel mutation in the GJA3 (connexin46) gene is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis. 2011a;17:1070–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Zhai X, Zhao J. A recurrent mutation in CRYBA1 is associated with an autosomal dominant congenital nuclear cataract disease in a Chinese family. Mol Vis. 2011b;17:1559–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Li Q, Ma Z, Guo Y, Zhu S, Ma X. A G→T splice site mutation of CRYBA1/A3 associated with autosomal dominant suture cataracts in a Chinese family. Mol Vis. 2011c;17:2065–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Su D, Li Q, Yang F, Ma Z, Zhu S, et al. A novel T→G splice site mutation of CRYBA1/A3 associated with autosomal dominant nuclear cataracts in a Chinese family. Mol Vis. 2012;18:1283–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao K, Tang X, Shentu X, Wang K, Rao H, Xia K. Progressive polymorphic congenital cataract caused by a CRYBB2 mutation in a Chinese family. Mol Vis. 2005;11:758–63.

    CAS  PubMed  Google Scholar 

  • Yu Y, Li J, Xu J, Wang Q, Yu Y, Yao K. Congenital polymorphic cataract associated with a G to A splice site mutation in the human beta-crystallin gene CRYβA3/A1. Mol Vis. 2012;18:2213–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Wu M, Chen X, Zhu Y, Gong X, Yao K. Identification and functional analysis of two novel connexin 50 mutations associated with autosome dominant congenital cataracts. Sci Rep. 2016;6:26551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Guo Y, Yi J, Xiao J, Yuan J, Xiong W, et al. Identification of a novel GJA3 mutation in congenital nuclear cataract. Optom Vis Sci. 2015;92:337–42.

    Article  PubMed  Google Scholar 

  • Zhai Y, Li J, Zhu Y, Xia Y, Wang W, Yu Y, et al. A nonsense mutation of γD-crystallin associated with congenital nuclear and posterior polar cataract in a Chinese family. Int J Med Sci. 2014;11:158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Fu S, Qu Y, Zhao T, Su Y, Liu P. A novel nonsense mutation in CRYGC is associated with autosomal dominant congenital nuclear cataracts and microcornea. Mol Vis. 2009a;15:276–82.

    PubMed  PubMed Central  Google Scholar 

  • Zhang LY, Yam GH, Tam PO, Lai RY, Lam DS, Pang CP, et al. An alpha A-crystallin gene mutation, Arg12Cys, causing inherited cataract-microcornea exhibits an altered heat-shock response. Mol Vis. 2009b;15:1127–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Qu X, Su S, Guan L, Liu P. A novel mutation in GJA3 associated with congenital Coppock-like cataract in a large Chinese family. Mol Vis. 2012a;18:2114–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang L, Wang J, Dong B, Li Y. Coralliform cataract caused by a novel connexin46 (GJA3) mutation in a Chinese family. Mol Vis. 2012b;18:203–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang Y, Fang F, Mu W, Zhang N, Xu T, et al. Congenital cataracts due to a novel 2-bp deletion in CRYBA1/A3. Mol Med Rep. 2014;10:1614–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Zhou N, Hu S, Zhao L, Zhang C, Qi Y. A missense mutation in CRYBA4 associated with congenital cataract and microcornea. Mol Vis. 2010a;16:1019–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Hu S, Wang B, Zhou N, Zhou S, Ma X, Qi Y. Mutation analysis of congenital cataract in a Chinese family identified a novel missense mutation in the connexin 46 gene (GJA3). Mol Vis. 2010b;16:713–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Wang B, Hu S, Zhang C, Ma X, Qi Y. Genetic variations in GJA3, GJA8, LIM2, and age-related cataract in the Chinese population: a mutation screening study. Mol Vis. 2011;17:621–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Ji H, Wei Z, Guo L, Li Y, Wang T, et al. A novel insertional mutation in the connexin 46 (gap junction alpha 3) gene associated with autosomal dominant congenital cataract in a Chinese family. Mol Vis. 2013;19:789–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Shentu X, Wang W, Li J, Jin C, Yao K. A Chinese family with progressive childhood cataracts and IVS3+1G>A CRYBA3/A1 mutations. Mol Vis. 2010;16:2347–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Yu H, Wang W, Gong X, Yao K. A novel GJA8 mutation (p.V44A) causing autosomal dominant congenital cataract. PLoS One. 2014;9:e115406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kannabiran, C. (2019). Genetics in Cataracts. In: Genetics of Eye Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-7146-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7146-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7145-5

  • Online ISBN: 978-981-13-7146-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics