Skip to main content

Advanced Approaches for Medical Image Segmentation

  • Chapter
  • First Online:
Application of Biomedical Engineering in Neuroscience

Abstract

Image segmentation, i.e., dividing an image into its constituent’s regions, is a decisive phase in plentiful medical imaging studies to extract meaningful information such as shape, volume, motion, and abnormalities and to quantify changes of the human organs by radiologists and investigators, which can be facilitated by several automated computational procedures. Several efficient approaches for medical image segmentation have been developed till now based on hard and soft computing models such as thresholding, clustering, graph cut approaches, fuzzy-based approaches, neural network approaches, and many more. Tremendous success of deep learning nowadays has achieved state-of-the-art performance for instinctive medical image segmentation. This chapter provides the brief introduction about medical image segmentation and several current researches for the precise dissection. Further, it will provide the information about the deep learning used as an advanced approach presently for accurate segmentation of medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reyes Aldasoro C, Bhalerao A (2007) Volumetric texture segmentation by discriminant feature selection and multiresolution classification. IEEE Trans Med Imaging 26(1):1–14. https://doi.org/10.1109/tmi.2006.884637

    Article  PubMed  Google Scholar 

  2. Sharma N, Ray A, Shukla K, Sharma S, Pradhan S, Srivastva A, Aggarwal L (2010) Automated medical image segmentation techniques. J Med Phys 35(1):3. https://doi.org/10.4103/0971-6203.58777

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mesejo P, IbĂ¡Ă±ez Ă“, CordĂ³n Ă“, Cagnoni S (2016) A survey on image segmentation using metaheuristic-based deformable models: state of the art and critical analysis. Appl Soft Comput 44:1–29. https://doi.org/10.1016/j.asoc.2016.03.004

    Article  Google Scholar 

  4. Choy S, Lam S, Yu K, Lee W, Leung K (2017) Fuzzy model-based clustering and its application in image segmentation. Pattern Recogn 68:141–157. https://doi.org/10.1016/j.patcog.2017.03.009

    Article  Google Scholar 

  5. Li Y, Shen Y (2009) An automatic fuzzy c-means algorithm for image segmentation. Soft Comput 14(2):123–128. https://doi.org/10.1007/s00500-009-0442-0

    Article  CAS  Google Scholar 

  6. Jiao L, Gong M, Wang S, Hou B, Zheng Z, Wu Q (2010) Natural and remote sensing image segmentation using memetic computing. IEEE Comput Intell Mag 5(2):78–91. https://doi.org/10.1109/mci.2010.936307

    Article  Google Scholar 

  7. Angel Arul Jothi J, Mary Anita Rajam V (2016) A survey on automated cancer diagnosis from histopathology images. Artif Intell Rev 48(1):31–81. https://doi.org/10.1007/s10462-016-9494-6

    Article  Google Scholar 

  8. Saritha S, Amutha Prabha N (2016) A comprehensive review: segmentation of MRI images-brain tumor. Int J Imaging Syst Technol 26(4):295–304. https://doi.org/10.1002/ima.22201

    Article  Google Scholar 

  9. Zhao Q, Li X, Li Y, Zhao X (2017) A fuzzy clustering image segmentation algorithm based on Hidden Markov Random Field models and Voronoi Tessellation. Pattern Recogn Lett 85:49–55. https://doi.org/10.1016/j.patrec.2016.11.019

    Article  CAS  Google Scholar 

  10. Aghajari E, Chandrashekhar G (2017) Self-organizing map based extended Fuzzy C-means (SEEFC) algorithm for image segmentation. Appl Soft Comput 54:347–363. https://doi.org/10.1016/j.asoc.2017.01.003

    Article  Google Scholar 

  11. Borges V, Guliato D, Barcelos C, Batista M (2014) An iterative fuzzy region competition algorithm for multiphase image segmentation. Soft Comput 19(2):339–351. https://doi.org/10.1007/s00500-014-1256-2

    Article  Google Scholar 

  12. Sonka M, Hlavac V, Boyle R (1999) Image processing, analysis and machine vision. Thomson Learning, Singapore

    Google Scholar 

  13. Bhaumik H, Bhattacharyya S, Nath M, Chakraborty S (2016) Hybrid soft computing approaches to content based video retrieval: a brief review. Appl Soft Comput 46:1008–1029. https://doi.org/10.1016/j.asoc.2016.03.022

    Article  Google Scholar 

  14. Jiang X, Wang Q, He B, Chen S, Li B (2016) Robust level set image segmentation algorithm using local correntropy-based fuzzy c-means clustering with spatial constraints. Neurocomputing 207:22–35. https://doi.org/10.1016/j.neucom.2016.03.046

    Article  Google Scholar 

  15. Ibrahim D (2016) An overview of soft computing. In: 12th international conference on application of fuzzy systems and soft computing, ICAFS 2016, Vienna, Austria. Proc Comput Sci 102:34–38. , 29–30. https://doi.org/10.1016/j.procs.2016.09.366

    Article  Google Scholar 

  16. Lee J, Jun S, Cho Y, Lee H, Kim G, Seo J, Kim N (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18(4):570. https://doi.org/10.3348/kjr.2017.18.4.570

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wong K (n.d.) Medical image segmentation: methods and applications in functional imaging. Topics in biomedical engineering international book series handbook of biomedical image analysis, pp 111–182. https://doi.org/10.1007/0-306-48606-7_3

  18. Saad NM, Abu-Bakar SA, Muda S, Mokji M (2011) Segmentation of brain lesions in diffusion-weighted MRI using thresholding technique. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA). https://doi.org/10.1109/icsipa.2011.6144092

  19. Aslam A, Khan E, Beg MS (2015) Improved edge detection algorithm for brain tumor segmentation. Proc Comput Sci 58:430–437. https://doi.org/10.1016/j.procs.2015.08.057

    Article  Google Scholar 

  20. Mathur N, Mathur S, Mathur D (2016) A novel approach to improve sobel edge detector. Proc Comput Sci 93:431–438. https://doi.org/10.1016/j.procs.2016.07.230

    Article  Google Scholar 

  21. Lin G, Wang W, Kang C, Wang C (2012) Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing. Magn Reson Imaging 30(2):230–246. https://doi.org/10.1016/j.mri.2011.09.008

    Article  PubMed  Google Scholar 

  22. Viji KS, Jayakumari J (2013) Modified texture based region growing segmentation of MR brain images. In: 2013 IEEE conference on information and communication technologies. https://doi.org/10.1109/cict.2013.6558183

  23. Pandav S (2014) Brain tumor extraction using marker controlled watershed segmentation. Int J Eng Res Technol. ISSN:2278-0181

    Google Scholar 

  24. Sudharani K, Sarma T, Prasad KS (2016) Advanced morphological technique for automatic brain tumor detection and evaluation of statistical parameters. Proc Technol 24:1374–1387. https://doi.org/10.1016/j.protcy.2016.05.153

    Article  Google Scholar 

  25. Trevino A (n.d.) Introduction to K-means Clustering. Retrieved from: https://www.datascience.com/blog/k-means-clustering

  26. Subbanna N, Precup D, Arbel T (2014) Iterative multilevel MRF leveraging context and voxel information for brain tumour segmentation in MRI. In: 2014 IEEE conference on computer vision and pattern recognition. https://doi.org/10.1109/cvpr.2014.58

  27. Vijay V, Kavitha A, Rebecca SR (2016) Automated brain tumor segmentation and detection in MRI using Enhanced Darwinian Particle Swarm Optimization(EDPSO). Proc Comput Sci 92:475–480. https://doi.org/10.1016/j.procs.2016.07.370

    Article  Google Scholar 

  28. Pezoulas VC, Zervakis M, Pologiorgi I, Seferlis S, Tsalikis GM, Zarifis G, Giakos GC (2017) A tissue classification approach for brain tumor segmentation using MRI. In: 2017 IEEE international conference on Imaging Systems and Techniques (IST). https://doi.org/10.1109/ist.2017.8261542

  29. Chandra GR, Rao KR (2016) Tumor detection in brain using genetic algorithm. Proc Comput Sci 79:449–457. https://doi.org/10.1016/j.procs.2016.03.058

    Article  Google Scholar 

  30. ChacĂ³n M MI (n.d.) Fuzzy logic for image processing: definition and applications of a fuzzy image processing scheme. In: Advances in industrial control advanced fuzzy logic technologies in industrial applications, pp 101–113. https://doi.org/10.1007/978-1-84628-469-4_7

  31. Nimeesha KM, Gowda RM (2013) Brain tumour segmentation using Kmeans and fuzzy c-means clustering algorithm. Int J Comput Sci Inf Technol Res Excell 3:60–65

    Google Scholar 

  32. Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, SĂ¡nchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  33. Visin F, Romero A, Cho K, Matteucci M, Ciccone M, Kastner K, Courville A (2016) ReSeg: a recurrent neural network-based model for semantic segmentation. In: 2016 IEEE conference on Computer Vision and Pattern Recognition Workshops (CVPRW). https://doi.org/10.1109/cvprw.2016.60

  34. Chen H, Dou Q, Yu L, Qin J, Heng P (2018) VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170:446–455. https://doi.org/10.1016/j.neuroimage.2017.04.041

    Article  PubMed  Google Scholar 

  35. Kooi T, Litjens G, Ginneken BV, Gubern-MĂ©rida A, SĂ¡nchez CI, Mann R, Karssemeijer N (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312. https://doi.org/10.1016/j.media.2016.07.007

    Article  PubMed  Google Scholar 

  36. Milletari F, Ahmadi S, Kroll C, Plate A, Rozanski V, Maiostre J, Navab N (2017) Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Underst 164:92–102. https://doi.org/10.1016/j.cviu.2017.04.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, S., Garg, A., Mohapatra, P. (2019). Advanced Approaches for Medical Image Segmentation. In: Paul, S. (eds) Application of Biomedical Engineering in Neuroscience. Springer, Singapore. https://doi.org/10.1007/978-981-13-7142-4_8

Download citation

Publish with us

Policies and ethics