Skip to main content

Techniques Used for the Prediction of Number of Faults

  • Chapter
  • First Online:
Fault Prediction Modeling for the Prediction of Number of Software Faults

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 339 Accesses

Abstract

Prediction of number of faults refers to the process of estimating/predicting a potential number of faults that can occur in each given software module [41]. A software module can be a class for object-oriented software, file for traditional software or any other independent component having a bunch of code bundles together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, H.: Partial least square regression (PLS regression). Encycl. Res. Methods Soc. Sci. 6(4), 792–795 (2003)

    Google Scholar 

  2. Afzal, W., Torkar, R., Feldt, R.: Prediction of fault count data using genetic programming. In: Proceedings of IEEE International Multitopic Conference, INMIC, pp. 349–356 (2008)

    Google Scholar 

  3. Aljamaan, H., Elish, M.O., et al.: An empirical study of bagging and boosting ensembles for identifying faulty classes in object-oriented software. In: CIDM 2009, IEEE Symposium on Computational Intelligence and Data Mining, pp. 187–194 (2009)

    Google Scholar 

  4. Arar, O.F., Ayan, K.: Software defect prediction using cost-sensitive neural network. Appl. Soft Comput. 33, 263–277 (2015)

    Article  Google Scholar 

  5. Bal, P., Kumar, S.: Extreme learning machine based linear homogeneous ensemble for software fault prediction. In Proceedings of 13th International Conference on Software Technologies (ICSOFT 2018), pp. 69–78 (2018a)

    Google Scholar 

  6. Bal, P., Kumar, S.: Cross project software defect prediction using extreme learning machine: an ensemble based study. In: Proceedings of 13th International Conference on Software Technologies (ICSOFT 2018), pp. 320–327 (2018b)

    Google Scholar 

  7. Basak, D., Pal, S., Patranabis, D.C.: Support vector regression. Neural Inf. Process. Lett. Rev. 11(10), 203–224 (2007)

    Google Scholar 

  8. Bell, R.M., Ostrand, T.J., Weyuker, E.J.: Looking for bugs in all the right places. In Proceedings of the 2006 International Symposium on Software testing and Analysis, ACM, pp. 61–72 (2006)

    Google Scholar 

  9. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Google Scholar 

  10. Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering Metrics and Models. Benjamin-Cummings Publishing Co., Inc (1986)

    Google Scholar 

  11. Dietterich, T.G.: Ensemble methods in machine learning. In: International Workshop on Multiple Classifier Systems. Springer, Berlin, Heidelberg, pp. 1–15 (2000)

    Google Scholar 

  12. Elish, M.O., Aljamaan, H., Ahmad, I.: Three empirical studies on predicting software maintainability using ensemble methods. Soft Comput. 19(9), 1–14 (2015)

    Google Scholar 

  13. Fagundes, R.A., Souza, R.M., Cysneiros, F.J.: Zero-inflated prediction model in software-fault data. IET Softw. 10(1), 1–9 (2016)

    Article  Google Scholar 

  14. Freund, Y.: Boosting a weak learning algorithm by majority. In: Proceedings of COLT, vol. 90, pp. 202–216 (1990)

    Google Scholar 

  15. Gao, K., Khoshgoftaar, T.M.: A comprehensive empirical study of count models for software fault prediction. IEEE Trans. Reliab. 56(2), 223–236 (2007)

    Article  Google Scholar 

  16. Gardner, W., Mulvey, E.P., Shaw, E.C.: Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. Psychol. Bull. 118(3), 392 (1995)

    Article  Google Scholar 

  17. Girard, D.A.: Asymptotic optimality of the fast randomized versions of GCV and CL in ridge regression and regularization. Ann. Stat. 19(4), 1950–1963 (1991)

    Article  Google Scholar 

  18. Graves, T.L., Karr, A.F., Marron, J.S., Siy, H.: Predicting fault incidence using software change history. IEEE Trans. Softw. Eng. 26(7), 653–661 (2000)

    Article  Google Scholar 

  19. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics on open source software for fault prediction. IEEE Trans. Softw. Eng. 31(10), 897–910 (2005)

    Article  Google Scholar 

  20. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on fault prediction performance in software engineering. IEEE Trans. Softw. Eng. 38(6), 1276–1304 (2012)

    Google Scholar 

  21. Hedeker, D., Gibbons, R.D.: A random-effects ordinal regression model for multilevel analysis. Biometrics, 933–944 (1994)

    Google Scholar 

  22. Hilbe, J.M.: Negative Binomial Regression, 2nd edn. Jet Propulsion Laboratory, California Institute of Technology and Arizona State University (2012)

    Google Scholar 

  23. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  24. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  Google Scholar 

  25. Hosmer Jr, D.W., Lemeshow, S., & Sturdivant, R.X.: Applied logistic regression, vol. 398. Wiley (2013)

    Google Scholar 

  26. Janes, A., Scotoo, M., Pedrycz, W., Russo, B., Stefanovic, M., Succi, G.: Identification of defect-prone classes in telecommunication software systems using design metrics. Inf. Sci. 176(24), 3711–3734 (2006)

    Article  Google Scholar 

  27. Jiang, Y., Cukic, B., Ma, Y.: Techniques for evaluating fault prediction models. Empir. Softw. Eng. 13(5), 561–595 (2008)

    Article  Google Scholar 

  28. Jolliffe, I.T.: A note on the use of principal components in regression. Appl. Stat. 31(3), 300–303 (1982)

    Google Scholar 

  29. Kleinbaum, D.G., Klein, M.: Logistic Regression: A Self-learning Text. Springer Science & Business Media (2010)

    Google Scholar 

  30. Kutner, M.H., Nachtsheim, C., Neter, J.: Applied Linear Regression Models. McGraw-Hill/Irwin (2004)

    Google Scholar 

  31. Lambert, D.: Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34(1), 1–14 (1992)

    Article  Google Scholar 

  32. LeBlanc, M., Tibshirani, R.: Combining estimates in regression and classification. J. Am. Stat. Assoc. 91(436), 1641–1650 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Li, W., Feng, J., Jiang, T.: IsoLasso: a LASSO regression approach to RNA-Seq based transcriptome assembly. In: International Conference on Research in Computational Molecular Biology. Springer, Berlin, Heidelberg, pp. 168–188 (2011)

    Google Scholar 

  34. Liu, R.X., Kuang, J., Gong, Q., Hou, X.L.: Principal component regression analysis with SPSS. Comput. Methods Programs Biomed. 71(2), 141–147 (2003)

    Article  Google Scholar 

  35. Mauša, G., Bogunović, N., Grbac, T.G., Bašić, B.D.: Rotation forest in software defect prediction. In: Proceedings of 4th Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications SQAMIA, pp. 35 (2015)

    Google Scholar 

  36. Mendes-Moreira, J., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches for regression: A survey. ACM Comput. Surv. (CSUR) 45(1), 10 (2012)

    Article  Google Scholar 

  37. Merz, C.J.: Classification and regression by combining models. PhD thesis, University of California Irvine (1998)

    Google Scholar 

  38. Mısırlı, A.T., Bener, A.B., Turhan, B.: An industrial case study of classifier ensembles for locating software defects. Softw. Qual. J. 19(3), 515–536 (2011)

    Article  Google Scholar 

  39. Mousavi, R., Eftekhari, M.: A new ensemble learning methodology based on hybridization of classifier ensemble selection approaches. Appl. Soft Comput. 37, 652–666 (2015)

    Article  Google Scholar 

  40. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Where the bugs are. ACM SIGSOFT Softw. Eng. Notes 29(4), 86–96 (2004)

    Article  Google Scholar 

  41. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the location and number of faults in large software systems. IEEE Trans. Softw. Eng. 31(4), 340–355 (2005)

    Article  Google Scholar 

  42. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Looking for bugs in all the right places. In: Proceedings of the International Symposium on Software Testing and Analysis, pp. 61–72 (2006)

    Google Scholar 

  43. Pai, G.J., Dugan, J.B.: Empirical analysis of software fault content and fault proneness using Bayesian methods. IEEE Trans. Softw. Eng. 33(10), 675–686 (2007)

    Article  Google Scholar 

  44. Perrone, M.P., Cooper, L.N.: When networks disagree: ensemble methods for hybrid neural networks (No. TR-61). Brown Univ Providence RI Inst for Brain and Neural Systems (1992)

    Google Scholar 

  45. Rathore, S.S., Kumar, S.: Predicting number of faults in software system using genetic programming. Procedia Comput. Sci. 62, 303–311 (2015)

    Article  Google Scholar 

  46. Rathore S.S., & Kumar, S.: An empirical study of some software fault prediction techniques for the number of faults prediction. Soft Comput. 21(24), 7417–7434 (2017a)

    Google Scholar 

  47. Rathore, S.S., Kumar, S.: Linear and non-linear heterogeneous ensemble methods to predict the number of faults in software systems. Knowl. Based Syst. 119, 232–256 (2017b)

    Google Scholar 

  48. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  49. Siers, M.J., Islam, M.Z.: Software defect prediction using a cost sensitive decision forest and voting, and a potential solution to the class imbalance problem. Inf. Syst. 51, 62–71 (2015)

    Article  Google Scholar 

  50. Khoshgoftaar, T.M., Geleyn, E., Nguyen, L.: Empirical case studies of combining software quality classification models. In Proceedings of 3rd International Conference on Quality Software, pp. 40–49 (2003)

    Google Scholar 

  51. Khoshgoftaar, T.M., Gao, K.: Count models for software quality estimation. IEEE Trans. Reliab. 56(2), 212–222 (2007)

    Article  Google Scholar 

  52. Theil, H.: A rank-invariant method of linear and polynomial regression analysis. Henri Theil’s Contributions to Economics and Econometrics, pp. 345–381. Springer, Dordrecht (1992)

    Chapter  Google Scholar 

  53. Twala, B.: Predicting software faults in large space systems using machine learning techniques. Def. Sci. J. 61(4), 306–316 (2011)

    Article  Google Scholar 

  54. Ver Hoef, J.M., Boveng, P.L.: Quasi‐Poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology 88(11), 2766–2772 (2007)

    Google Scholar 

  55. Veryard, R.: The Economics of Information Systems and Software. Butterworth-Heinemann (2014)

    Google Scholar 

  56. Wang, T., Li, W., Shi, H., Liu, Z.: Software defect prediction based on classifiers ensemble. J. Inf. Comput. Sci. 8(16), 4241–4254 (2011)

    Google Scholar 

  57. Wolpert, D.H.: Stacked generalization. Neural networks 5(2), 241–259 (1992)

    Article  Google Scholar 

  58. Ye, X., Bunescu, R., Liu, C.: Mapping bug reports to relevant files: a ranking model, a fine-grained benchmark, and feature evaluation. IEEE Trans. Softw. Eng. 42(4), 379–402 (2016)

    Article  Google Scholar 

  59. Yu, L.: Using negative binomial regression analysis to predict software faults: a study of apache ant. Int. J. Inf. Technol. Comput. Sci. 4(8), 63–70 (2012)

    Google Scholar 

  60. Zheng, J.: Cost-sensitive boosting neural networks for software defect prediction. Expert. Syst. Appl. 37(6), 4537–4543 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Singh Rathore .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathore, S.S., Kumar, S. (2019). Techniques Used for the Prediction of Number of Faults. In: Fault Prediction Modeling for the Prediction of Number of Software Faults. SpringerBriefs in Computer Science. Springer, Singapore. https://doi.org/10.1007/978-981-13-7131-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7131-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7130-1

  • Online ISBN: 978-981-13-7131-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics