Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 308 Accesses

Abstract

Materials in the world can be classified into either insulator or metal from the viewpoint of the electric conduction. Exploration of novel electronic phases which beyond the traditional classification based on the band theory is one of the challenging subjects in condensed matter physics. In this chapter, we give general introduction about intriguing electronic states such as excitonic insulator and topological phases, which are expected to emerge near the metal-insulator boundary. Subsequently, we clarify the issues addressed in this study and propose solutions for them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhargava RN (1967) Phys Rev 156:785. https://link.aps.org/doi/10.1103/PhysRev.156.785

  2. Zhu Z, Fauqué B, Fuseya Y, Behnia K (2011) Phys Rev B 84:115137. https://link.aps.org/doi/10.1103/PhysRevB.84.115137

  3. Yaguchi H, Singleton J (2009) J Phys Condens Matter 21:344207. http://stacks.iop.org/0953-8984/21/i=34/a=344207

  4. Soule DE, McClure JW, Smith LB (1964) Phys Rev 134:A453. https://link.aps.org/doi/10.1103/PhysRev.134.A453

  5. Boyle WS, Brailsford AD (1957) Phys Rev 107:903. https://link.aps.org/doi/10.1103/PhysRev.107.903

  6. Bermon S (1967) Phys Rev 158:723. https://link.aps.org/doi/10.1103/PhysRev.158.723

  7. Shubnikov LW, de Haas WJ (1930) Proc Neth Roy Acad Sci 33:130

    Google Scholar 

  8. Shubnikov LW, de Haas WJ (1930) Proc Neth Roy Acad Sci 33:163

    Google Scholar 

  9. de Haas WJ, van Alphen PM (1930) Proc Neth Roy Acad Sci 33:680

    Google Scholar 

  10. de Haas WJ, van Alphen PM (1930) Proc Neth Roy Acad Sci 33:1106

    Google Scholar 

  11. Fukuyama H (1978) Solid State Commun 26:783. http://www.sciencedirect.com/science/article/pii/0038109878907421

  12. Jérome D, Rice TM, Kohn W (1967) Phys Rev 158:462. https://link.aps.org/doi/10.1103/PhysRev.158.462

  13. Kuramoto Y (1982) In: Otsuki Y (ed) Butsurigaku Saizensen (Frontier of Physics) 2. Kyoritsu Shuppan, Tokyo (in Japanese)

    Google Scholar 

  14. Mott NF (1961) Phil Mag 6:287. https://doi.org/10.1080/14786436108243318

  15. Elliott RJ, Loudon R (1959) J Phys Chem Solids 8:382. http://www.sciencedirect.com/science/article/pii/0022369759903713

  16. Elliott RJ, Loudon R (1960) J Phys Chem Solids 15:196. http://www.sciencedirect.com/science/article/pii/0022369760902432

  17. Fenton EW (1968) Phys Rev 170:816. https://link.aps.org/doi/10.1103/PhysRev.170.816

  18. Akiba K (2015) Study of electronic phases in the quantum limit state of graphite in pulsed magnetic fields, Master’s thesis, The University of Tokyo

    Google Scholar 

  19. Akiba K, Miyake A, Yaguchi H, Matsuo A, Kindo K, Tokunaga M (2015) J Phys Soc Jpn 84:054709. https://doi.org/10.7566/JPSJ.84.054709

  20. Zhu Z, McDonald RD, Shekhter A, Ramshaw BJ, Modic KA, Balakirev FF, Harrison N (2017) Sci Rep 7:1733. https://www.nature.com/articles/s41598-017-01693-5

  21. Mase S, Sakai T (1971) J Phys Soc Jpn 31:730. https://doi.org/10.1143/JPSJ.31.730

  22. Sakai T, Goto N, Mase S (1973) J Phys Soc Jpn 35:1064. https://doi.org/10.1143/JPSJ.35.1064

  23. Fenton EW (1973) Solid State Commun 13:815. http://www.sciencedirect.com/science/article/pii/0038109873903748

  24. Wakisaka Y, Sudayama T, Takubo K, Mizokawa T, Arita M, Namatame H, Taniguchi M, Katayama N, Nohara M, Takagi H (2009) Phys Rev Lett 103:026402. https://link.aps.org/doi/10.1103/PhysRevLett.103.026402

  25. Seki K, Wakisaka Y, Kaneko T, Toriyama T, Konishi T, Sudayama T, Saini NL, Arita M, Namatame H, Taniguchi M, Katayama N, Nohara M, Takagi H, Mizokawa T, Ohta Y (2014) Phys Rev B 90:155116. https://link.aps.org/doi/10.1103/PhysRevB.90.155116

  26. Pillo T, Hayoz J, Berger H, Lévy F, Schlapbach L, Aebi P (2000) Phys Rev B 61:16213. https://link.aps.org/doi/10.1103/PhysRevB.61.16213

  27. Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier MG, Beck H, Aebi P, Patthey L, Berger H, Forró L (2007) Phys Rev Lett 99:146403. https://link.aps.org/doi/10.1103/PhysRevLett.99.146403

  28. Monney C, Schwier EF, Garnier MG, Mariotti N, Didiot C, Cercellier H, Marcus J, Berger H, Titov AN, Beck H, Aebi P (2010) New J Phys 12:125019. http://stacks.iop.org/1367-2630/12/i=12/a=125019

  29. Bucher B, Steiner P, Wachter P (1991) Phys Rev Lett 67:2717. https://link.aps.org/doi/10.1103/PhysRevLett.67.2717

  30. Yoshioka K, Chae E, Gonokami MK (2011) Nat Commun 2:328. http://dx.doi.org/10.1038/ncomms1335

  31. Liu ZK, Jiang J, Zhou B, Wang ZJ, Zhang Y, Weng HM, Prabhakaran D, Mo S-K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen ZX, Feng DL, Hussain Z, Chen YL (2014) Nat Mater 13:677. http://dx.doi.org/10.1038/nmat3990

  32. Wang Z, Weng H, Wu Q, Dai X, Fang Z (2013) Phys Rev B 88:125427. https://link.aps.org/doi/10.1103/PhysRevB.88.125427

  33. Liang T, Gibson Q, Ali MN, Liu M, Cava RJ, Ong NP (2015) Nat Mater 14:280. http://dx.doi.org/10.1038/nmat4143

  34. Xiong J, Kushwaha SK, Liang T, Krizan JW, Hirschberger M, Wang W, Cava RJ, Ong NP (2015) Science 350:413. http://science.sciencemag.org/content/350/6259/413

  35. Fu L, Kane CL (2007) Phys Rev B 76:045302. https://link.aps.org/doi/10.1103/PhysRevB.76.045302

  36. Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava RJ, Hasan MZ (2008) Nature (London) 452:970. http://dx.doi.org/10.1038/nature06843

  37. Liu ZK, Zhou B, Zhang Y, Wang ZJ, Weng HM, Prabhakaran D, Mo S-K, Shen ZX, Fang Z, Dai X, Hussain Z, Chen YL (2014) Science 343:864. http://science.sciencemag.org/content/343/6173/864

  38. Xu S-Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C-C, Huang S-M, Zheng H, Ma J, Sanchez DS, Wang B, Bansil A, Chou F, Shibayev PP, Lin H, Jia S, Hasan MZ (2015) Science 349:613. http://science.sciencemag.org/content/349/6248/613

  39. Wu Y, Mou D, Jo NH, Sun K, Huang L, Bud’ko SL, Canfield PC, Kaminski A (2016) Phys Rev B 94:121113. https://link.aps.org/doi/10.1103/PhysRevB.94.121113

  40. Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S (2016) Nat Phys 12:1105. http://dx.doi.org/10.1038/nphys3871

  41. Neupane M, Xu SY, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang TR, Jeng HT, Lin H, Bansil A, Chou F, Hasan MZ (2014) Nat Commun 5:3786. http://dx.doi.org/10.1038/ncomms4786

  42. Wang Z, Sun Y, Chen X-Q, Franchini C, Xu G, Weng H, Dai X, Fang Z (2012) Phys Rev B 85:195320. https://link.aps.org/doi/10.1103/PhysRevB.85.195320

  43. Mikitik GP, Sharlai YV (1999) Phys Rev Lett 82:2147. https://link.aps.org/doi/10.1103/PhysRevLett.82.2147

  44. Murakawa H, Bahramy MS, Tokunaga M, Kohama Y, Bel C, Kaneko Y, Nagaosa N, Hwang HY, Tokura Y (2013) Science 342:1490. http://science.sciencemag.org/content/342/6165/1490 64

  45. Ando Y (2013) J Phys Soc Jpn 82:102001. https://doi.org/10.7566/JPSJ.82.102001

  46. Wang CM, Lu H-Z, Shen S-Q (2016) Phys Rev Lett 117:077201. https://link.aps.org/doi/10.1103/PhysRevLett.117.077201

  47. Abrikosov AA (1998) Phys Rev B 58:2788. https://link.aps.org/doi/10.1103/PhysRevB.58.2788

  48. Abrikosov AA (2000) Phys Rev B 61:7770. https://link.aps.org/doi/10.1103/PhysRevB.61.7770

  49. Wang CM, Lei XL (2012) Phys Rev B 86:035442. https://link.aps.org/doi/10.1103/PhysRevB.86.035442

  50. Parish MM, Littlewood PB (2003) Nature (London) 426:162. http://dx.doi.org/10.1038/nature02073

  51. Kisslinger F, Ott C, Weber HB (2017) Phys Rev B 95:024204. https://link.aps.org/doi/10.1103/PhysRevB.95.024204

  52. Nielsen HB, Ninomiya M (1983) Phys Lett B 130:389. http://www.sciencedirect.com/science/article/pii/0370269383915290

  53. Arnold F, Shekhar C, Wu SC, Sun Y, dos Reis RD, Kumar N, Naumann M, Ajeesh MO, Schmidt M, Grushin AG, Bardarson JH, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E, Yan B (2016) Nat Commun 7:11615. http://dx.doi.org/10.1038/ncomms11615

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuto Akiba .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akiba, K. (2019). General Introduction. In: Electronic States of Narrow-Gap Semiconductors Under Multi-Extreme Conditions. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-7107-3_1

Download citation

Publish with us

Policies and ethics