Skip to main content

Operational Transconductance Amplifier Structured Highly Linear Analog Multiplier

  • Conference paper
  • First Online:
  • 935 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 556))

Abstract

Analog multiplier is a key element in modern communication systems. This paper presents the capability of cross-coupled operational transconductance amplifier (OTA) as an analog multiplier with performance analysis and design consideration. The proposed OTA structure is built and tested as a multiplier in Cadence Analog Design Environment (ADE) using standard 0.18 μm CMOS process. The simulation result shows that the proposed OTA structured multiplier has better linearity with comparable power consumption and noise performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Popa C (2014) Improved accuracy current-mode multiplier circuits with applications in analog signal processing. IEEE Trans Very Large Scale Integr (VLSI) Syst 22(2):443–447

    Article  Google Scholar 

  2. Katayama K et al (2016) A 300 GHz CMOS transmitter with 32-QAM 17.5 Gb/s/ch capability over six channels. IEEE J Solid State Circuits 51(12):3037–3048

    Article  Google Scholar 

  3. Hossain M et al (2016) A G-band high power frequency doubler in transferred substrate InP HBT technology. IEEE Microw Guided Wave Lett 26(1):49–51

    Article  Google Scholar 

  4. Liu G et al (2015) Frequency doublers with 10.2/5.2 dBm peak power at 100/202 GHz in 45 nm SOI CMOS. In: Proceedings of IEEE radio frequency integrated circuits symposium (RFIC), pp 271–274, May 2015

    Google Scholar 

  5. Al-Absi MA, As-Sabban IA (2015) A new highly accurate CMOS current-mode four-quadrant multiplier. Arab J Sci Eng 40:551–558

    Article  Google Scholar 

  6. Beyraghi N, Khoei A (2015) CMOS design of a low power and high precision four-quadrant analog multiplier. Int J Electron Commun (AEÜ) 69:400–407

    Article  Google Scholar 

  7. Popa C (2009) Multiplier circuit with improved linearity using FGMOS transistors. In: Proceedings of international symposium ELMAR 2009, pp 159–162

    Google Scholar 

  8. Hidyat R, Dejhan K, Moungnoul P, Miyanaga Y (2008) OTA-based high frequency CMOS multiplier and squaring circuit. In: Proceedings of international symposium on intelligent signal processing and communication systems, pp 1–4

    Google Scholar 

  9. Naderi A, Khoei A, Hadidi K (2007) High speed, low power four quadrant CMOS current-mode multiplier. In: Proceedings of IEEE international conference on electronics circuits and systems, pp 1308–1311, Dec 2007

    Google Scholar 

  10. Maundy B, Aronhime P (2002) Useful multipliers for low-voltage applications. In: Proceedings of IEEE international symposium on circuits and systems, vol 1, pp 26–29, May 2002

    Google Scholar 

  11. Liu S, Chang C (1995) CMOS subthreshold four quadrant multiplier based on unbalanced source coupled pairs. Int J Electron 78:327–332

    Article  Google Scholar 

  12. Mehrvarz HR, Kwok CY (1995) A large-input-dynamic-range multi input floating gate MOS four-quadrant analog multiplier. In: Proceedings of IEEE international solid-state circuits conference, pp 60–61, Feb 1995

    Google Scholar 

  13. Wang Z (1993) A four-transistor four-quadrant analog multiplier using MOS transistors operating in the saturation region. IEEE Trans Instrum Meas 42(1):75–77

    Article  MathSciNet  Google Scholar 

  14. Han G, Sanchez-Sinencio E (1998) CMOS transconductance multipliers: a tutorial. IEEE Trans Circuits Syst II Analog Digit Signal Process 45(12):1550–1563

    Article  Google Scholar 

  15. Liu S, Hwang Y (1994) CMOC four-quadrant multiplier using bias feedback techniques. IEEE J Solid State Circuits 29:750–752

    Article  Google Scholar 

  16. Sawigun C, Mahattanakul J (2008) A 1.5 V, wide-input range, high bandwidth, CMOS four-quadrant analog multiplier. In: Proceedings of IEEE international symposium on circuits and systems, pp 2318–2321, May 2008

    Google Scholar 

  17. Sawigun C, Demosthenous A, Pal D (2007) A low-voltage, low-power, high-linearity CMOS four-quadrant analog multiplier. In: Proceedings of 18th European conference on circuit theory and design, pp 751–754, Aug 2007

    Google Scholar 

  18. Chen C, Li Z (2006) A low-power CMOS analog multiplier. IEEE Trans Circuits Syst

    Google Scholar 

  19. Razavi B (2001) Design of analog CMOS integrated circuits. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgements

The support of the Management and the Director Dr. M. B. Khambete of MKSSS’s Cummins College of Engineering for Women Karve Nagar, Pune is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitkumar S. Khade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khade, A.S., Vyas, V. (2019). Operational Transconductance Amplifier Structured Highly Linear Analog Multiplier. In: Nath, V., Mandal, J. (eds) Proceedings of the Third International Conference on Microelectronics, Computing and Communication Systems. Lecture Notes in Electrical Engineering, vol 556. Springer, Singapore. https://doi.org/10.1007/978-981-13-7091-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7091-5_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7090-8

  • Online ISBN: 978-981-13-7091-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics