Skip to main content

Electronic Applications of Conducting Polymer Nanocomposites

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 556))

Abstract

Recently, conducting polymers (CPs) have economic importance because of their functional elements, good environmental stability, flexibility, and electrical conductivity as well as because of their useful mechanical, optical, and electronic properties. In conducting polymer nanocomposites, polymer function as a matrix and different nanofillers are embedded in the matrix results in the formation of new material and can be used in various applications as per requirement. Some of the applications of conducting polymer nanocomposite include: conducting adhesives, electrostatic materials, electromagnetic shielding materials, transistors, supercapacitors, sensors, diodes, etc. This review includes some of the important applications of conducting polymers with nanofibers and nanotubes in sensors, field effect transistors, nanodiodes, field emission, energy storage, actuators, and super capacitors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tran HD, Li D, Kaner RD (2009) One‐dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater 21:1487–1499

    Google Scholar 

  2. Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409

    Google Scholar 

  3. Wan M (2009) Some issues related to polyaniline micro-/nanostructures. Macromol Rapid Commun 30:963–975

    Article  Google Scholar 

  4. Stejskal J, Sapurina I, Trchová M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481

    Google Scholar 

  5. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers. Curr Appl Phys 1:269–279

    Article  Google Scholar 

  6. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int Ed 40:2591–2611

    Article  Google Scholar 

  7. Wang J, Dai J, Yarlagadda T (2005) Carbon nanotube– conducting-polymer composite nanowires. Langmuir 21:9–12

    Google Scholar 

  8. Lee BH, Lee JH, Kahng YH, Kim N, Kim YJ, Lee J, Lee T, Lee K (2014) Graphene-conducting polymer hybrid transparent electrodes for efficient organic optoelectronic devices. Adv Funct Mater 24:1847–1856

    Google Scholar 

  9. Gupta S, McDonald B, Carrizosa SB, Price C (2016) Microstructure, residual stress, and intermolecular force distribution maps of graphene/polymer hybrid composites: nanoscale morphology-promoted synergistic effects. Compos B Eng 92:175–192

    Article  Google Scholar 

  10. Gupta S, Price C, Heintzman E (2016) Conducting polymer nanostructures and nanocomposites with carbon nanotubes: hierarchical assembly by molecular electrochemistry, growth aspects and property characterization. J Nanosci Nanotechnol 16:374–391

    Google Scholar 

  11. Yu G, Lu Y, Liu X, Wang W-J, Yang Q, Xing H, Ren Q, Li B-G, Zhu S (2014) Polyethylenimine-assisted extraction of α-tocopherol from tocopherol homologues and CO2-triggered fast recovery of the extractant. Ind Eng Chem Res 53:16025–16032

    Google Scholar 

  12. Law M, Kind H, Messer B, Kim F, Yang P (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem 114:2511–2514

    Google Scholar 

  13. Zhang Q, Yu G, Wang W-J, Yuan H, Li B-G, Zhu S (2012) Preparation of N2/CO2 triggered reversibly coagulatable and redispersible latexes by emulsion polymerization of styrene with a reactive switchable surfactant. Langmuir 28:5940–5946

    Google Scholar 

  14. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Sci 292:1897–1899

    Google Scholar 

  15. Geetha S, Satheesh Kumar KK, Trivedi DC (2005) Polyaniline reinforced conducting E-glass fabric using 4-chloro-3-methyl phenol as secondary dopant for the control of electromagnetic radiations. Compos Sci Technol 65:973–980

    Article  Google Scholar 

  16. Stafstrom S, Bredas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG (1987) Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys Rev Lett 59:1464

    Google Scholar 

  17. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926

    Google Scholar 

  18. Phang SW et al (2008) Microwave absorption behaviors of polyaniline nanocomposites containing TiO2 nanoparticles. Curr Appl Phys 8:391–394

    Article  Google Scholar 

  19. Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2008) Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synth Metals 158:251–258

    Google Scholar 

  20. Cuenot S, Demoustier-Champagne S, Nysten B (2000) Elastic modulus of polypyrrole nanotubes. Phys Rev Lett 85:1690

    Google Scholar 

  21. Muraoka M, Tobe R (2009) Mechanical characterization of nanowires based on optical diffraction images of the bent shape. J Nanosci Nanotechnol 9:4566–4574

    Article  Google Scholar 

  22. Gordon MJ, Baron T, Dhalluin F, Gentile P, Ferret P (2009) Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett 9:525–529

    Google Scholar 

  23. Olson DC, Piris J, Collins RT, Shaheen SE, Ginley DS (2006) Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 496:26–29

    Google Scholar 

  24. Lu Y, Yu G, Wang W-J, Ren Q, Li B-G, Zhu S (2015) Design and synthesis of thermoresponsive ionic liquid polymer in acetonitrile as a reusable extractant for separation of tocopherol homologues. Macromol 48:915–924

    Google Scholar 

  25. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Sci 266:1961–1966

    Article  Google Scholar 

  26. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Sci 291:851–853

    Article  Google Scholar 

  27. Greene LE, Law M, Yuhas BD, Yang P (2007) ZnO–TiO2 core–shell nanorod/P3HT solar cells. J Phys Chem C 111:18451–18456

    Google Scholar 

  28. Shankar K, Mor GK, Paulose M, Varghese OK, Grimes CA (2008) Effect of device geometry on the performance of TiO2 nanotube array-organic semiconductor double heterojunction solar cells. J Non-Cryst Solids 354:2767–2771

    Google Scholar 

  29. Fan B, Mei X, Sun K, Ouyang J (2008) Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells. Appl Phys Lett 93:143103

    Google Scholar 

  30. Tepavcevic S, Darling SB, Dimitrijevic NM, Rajh T, Sibener SJ (2009) Improved hybrid solar cells via in situ UV polymerization. Small 5:1776–1783

    Google Scholar 

  31. Houarner-Rassin C, Blart E, Buvat P, Odobel F (2008) Solid-state dye-sensitized TiO2 solar cells based on a sensitizer covalently wired to a hole conducting polymer. Photochem Photobiol Sci 7:789–793

    Google Scholar 

  32. Khatri I, Adhikari S, Aryal HR, Soga T, Jimbo T, Umeno M (2009) Improving photovoltaic properties by incorporating both single walled carbon nanotubes and functionalized multiwalled carbon nanotubes. Appl Phys Lett 94:093509

    Google Scholar 

  33. Chen Z, Xu L, Li W, Waje M, Yan Y (2006) Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnol 17:5254

    Google Scholar 

  34. Ma Y, Jiang S, Jian G, Tao H, Yu L, Wang X, Wang X, Zhu J, Hu Z, Chen Y (2009) CNx nanofibers converted from polypyrrole nanowires as platinum support for methanol oxidation. Energy Environ Sci 2:224–229

    Google Scholar 

  35. Reddy ALM, Rajalakshmi N, Ramaprabhu S (2008) Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells. Carbon 46:2–11

    Google Scholar 

  36. Tarascon J–M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group. World Scientific, pp 171–179

    Google Scholar 

  37. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31

    Google Scholar 

  38. Malta M, Louarn G, Errien N, Torresi RM (2003) Nanofibers composite vanadium oxide/polyaniline: synthesis and characterization of an electroactive anisotropic structure. Electrochem Commun 5:1011–1015

    Google Scholar 

  39. Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater 14:1610–1613

    Google Scholar 

  40. Ju Y-W, Choi G-R, Jung H-R, Lee W-J (2008) Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole. Electrochim Acta 53:5796–5803

    Google Scholar 

  41. Khomenko V, Frackowiak EB (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50:2499–2506

    Article  Google Scholar 

  42. Gupta V, Miura N (2006) Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochim Acta 52:1721–1726

    Article  Google Scholar 

  43. Chen L, Yuan C, Dou H, Gao B, Chen (2009) Synthesis and electrochemical capacitance of core–shell poly (3, 4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites. Electrochim Acta 54:2335–2341

    Google Scholar 

  44. Liu R, Lee SB (2008) MnO2/poly (3, 4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130:2942–2943

    Article  Google Scholar 

  45. Wan M, Li J, Li S (2001) Microtubules of polyaniline as new microwave absorbent materials. 12:651–657

    Google Scholar 

  46. Liu C, Lee R, Bok S (2007) Electromaganic wave absorbing property of polyaniline/polystylene composites. Acta Metall Sin-Chin Ed- 43:409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhudendra Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panda, S., Acharya, B. (2019). Electronic Applications of Conducting Polymer Nanocomposites. In: Nath, V., Mandal, J. (eds) Proceedings of the Third International Conference on Microelectronics, Computing and Communication Systems. Lecture Notes in Electrical Engineering, vol 556. Springer, Singapore. https://doi.org/10.1007/978-981-13-7091-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7091-5_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7090-8

  • Online ISBN: 978-981-13-7091-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics