Skip to main content

Future Airspace Design by Dynamic Sectorization

  • Conference paper
  • First Online:
Air Traffic Management and Systems III (EIWAC 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 555))

Included in the following conference series:

Abstract

The future airspace has to provide a reliable infrastructure and operational concept to ensure efficient and safe operations considering both flight-centric operations and the integration of new entrants. We propose an approach for a dynamic sectorization to manage the air traffic demand and flow appropriately. Our dynamic sectorization results in enhancements of the current operational structure (less deviation in controller task load) and leads to a significantly lower controller task load for the newly created airspace. Since future 4D trajectory management demands an efficient consideration of operational (e.g., temporally restricted areas), ecological (e.g., contrail prevention), and economic (e.g., functional airspace blocks) constraints, our dynamic sectorization method contributes to the highly flexible use of current and future airspace. In this paper, we provide an overview of several use cases and describe the working principle of our approach: fuzzy clustering of air traffic, Voronoi diagram for initial structures, and evolutionary algorithms for optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerdes I, Temme A, Schultz M (2016) Dynamic airspace sectorization using controller task load. SESAR innovation days, Delft

    Google Scholar 

  2. Standfuß T, Gerdes I, Temme A, Schultz M (2018) Dynamic airspace optimisation. CEAS Aeronaut J

    Google Scholar 

  3. Rosenow J, Fricke H, Luchkova T, Schultz M (2018) Minimizing contrail formation by rerouting around dynamic ice-supersaturated regions. AAOAJ 2(3):105–111

    Article  Google Scholar 

  4. Eurocontrol FAA (2016) Comparison of air traffic management-related operational performance: U.S./Europe 2015

    Google Scholar 

  5. Buxbaum J, Standfuß T (2014) Data envelopment analysis. DFS Innovat Fokus 1:11–16

    Google Scholar 

  6. Regulation (EC) No549/2004, Framework for the creation of the single European sky

    Google Scholar 

  7. Standfuß T, Fichert F, Schultz M (2017) Efficiency gains through functional airspace blocks? An analysis of economies of scale in European air traffic management, ITEA

    Google Scholar 

  8. Button K, Nieva R (2013) Single European sky and the functional airspace blocks: will they improve economic efficiency, vol 33, pp 73–80

    Article  Google Scholar 

  9. Luchkova T, Vujasinovic R, Lau A, Schultz M (2015) Analysis of impacts an Eruption of volcano stromboli could have on European air traffic. In: 11th USA/Europe air traffic management research and development seminar

    Google Scholar 

  10. Kaltenhäuser S, Morlang F, Luchkova T, Hampe J, Sippel M (2017) Facilitating sustainable commercial space transportation through an efficient integration into air traffic management. New Space 5(4):244–256

    Article  Google Scholar 

  11. Luchkova T, Kaltenhäuser S, Morlang F (2016) Air traffic impact analysis design for a suborbital point-to-point passenger transport concept. In: 3rd annual space traffic management conference “Emerging Dynamics”

    Google Scholar 

  12. Kerner BS (1998) Experimental features of self-organization in traffic flow. Phys Rev Lett 81:3797

    Article  Google Scholar 

  13. Sunil E, Hoekstra J, Ellerbroek J, Bussink F, Nieuwenhuisen D, Vidosavljevic A, Kern S (2015) Metropolis: relating airspace structure and capacity for extreme traffic densities. In: 11th USA/Europe air traffic management research and development seminar

    Google Scholar 

  14. Schneider O, Kern S, Knabe F, Gerdes I, Delahaye D, Vidosavljevic A, Leeuwen P van, Nieuwenhuisen D, Sunil E, Hoekstra J, Ellerbroek J (2014) METROPOLIS—urban airspace design, D 2.2—concept design (D 2.2)

    Google Scholar 

  15. Temme A, Helm S (2016) Unmanned freight operations. DLRK 2016, Brunswick

    Google Scholar 

  16. Brodersen Y, Luchkova T, Temme A, Lindner M, Rosenow J, Schultz M (2017) Entwicklung und Bewertung von Formationsflugszenarien unbemannter Frachtflugzeuge. DLRK 2017, Munich

    Google Scholar 

  17. Kopardekar P, Bilimoria K, Sridhar B (2007) Initial concepts for dynamic airspace configuration. In: 7th AIAA aviation technology, integration and operations conference (ATIO), Belfast

    Google Scholar 

  18. Flener P, Pearson J (2013) Automatic airspace sectorisation: a survey. Comput Res Reposit 1311:0653

    Google Scholar 

  19. Keller A (2002) Objective function based fuzzy clustering in air traffic management. Otto-von-Guericke University, Magdeburg

    Google Scholar 

  20. Oliviera JV de, Pedrycz W (2007) Advances in fuzzy clustering and its applications. Wiley

    Google Scholar 

  21. Krishnapuram R, Keller J (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 2:98–110

    Article  Google Scholar 

  22. Berg M, Cheong O, van Kevald M, Pvermars M (2008) Computational geometry, algorithms and applications. Springer, Berlin, Heidelberg

    Google Scholar 

  23. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  24. Gerdes I, Klawonn F, Kruse R (2004) Evolutionäre Algorithmen. Vieweg, Wiesbaden

    Book  Google Scholar 

  25. Eurocontrol (2017) Eurocontrol demand data repository. Eurocontrol. https://www.eurocontrol.int/ddr. Accessed 26 Sept 2017

  26. Delahaye D, Schoenauer M, Alliot JM (1998) Airspace sectoring by evolutionary algorithms. In: IEEE international congress on evolutionary computation

    Google Scholar 

  27. Kulkarni S, Ganesan R, Sherry L (2011) Static sectorization approach to dynamic airspace configuration using approximate dynamic programming. In: ICNS conference

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schultz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schultz, M., Gerdes, I., Standfuß, T., Temme, A. (2019). Future Airspace Design by Dynamic Sectorization. In: Electronic Navigation Research Institute (eds) Air Traffic Management and Systems III. EIWAC 2017. Lecture Notes in Electrical Engineering, vol 555. Springer, Singapore. https://doi.org/10.1007/978-981-13-7086-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7086-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7085-4

  • Online ISBN: 978-981-13-7086-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics