Electrostatic Self-Assembled Carbon Nanotube/Nano-Carbon Black Fillers-Engineered Cementitious Composites

  • Baoguo HanEmail author
  • Siqi Ding
  • Jialiang Wang
  • Jinping Ou


Electrostatic self-assembled carbon nanotube/nano-carbon black fillers with grape bunch structure are added into cementitious composites to develop multi-functional/smart materials. The mechanical, electrically conductive, and self-sensing behaviors of electrostatic self-assembled fillers-engineered cementitious composites are investigated. The feasibility of using self-sensing electrostatic self-assembled fillers-engineered cementitious composites for in-situ monitoring of concrete columns is also verified. Experimental results show that because of their good dispersibility and cooperative modification effect, the electrostatic self-assembled fillers can effectively enhance electrical conductivity of the cementitious composites and endow stable and sensitive self-sensing capability to the cementitious composites at a low content of fillers. The electrostatic self-assembled fillers-engineered cementitious composites with self-sensing capability present potential for structural health monitoring of smart infrastructures.


Electrostatic self-assembled carbon nanotube/nano-carbon black fillers Cementitious composites Properties/performances Mechanisms Applications 


  1. 1.
    B.G. Han, X. Yu, J.P. Ou, Self-sensing Concrete in Smart Structures (Elsevier, 2014)Google Scholar
  2. 2.
    Y.W. Dai, M.Q. Sun, C.G. Liu, Z.Q. Li, Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cement Concr. Compos. 32(7), 508–513 (2010)CrossRefGoogle Scholar
  3. 3.
    Y.L. Wang, X.H. Zhao, Mechanical properties and microstructure analysis of cement-based composites containing nano-sized carbon black. Mater. Rev. 22(Z1), 159–162 (2009)MathSciNetGoogle Scholar
  4. 4.
    B.G. Han, S.Q. Ding, X. Yu, Intrinsic self-sensing concrete and structures: a review. Measurement 59, 110–128 (2015)CrossRefGoogle Scholar
  5. 5.
    B.G. Han, Y.Y. Wang, S.F. Dong, L.Q. Zhang, S.Q. Ding, X. Yu, J.P. Ou, Smart concrete and structures: a review. J. Intell. Mater. Syst. Struct. 26(1), 1303–1345 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Chiarello, R. Zinno, Electrical conductivity of self-monitoring CFRC. Cement Concr. Compos. 27(4), 463–469 (2005)CrossRefGoogle Scholar
  7. 7.
    S.W. Sun, S.Q. Ding, B.G. Han, S.F. Dong, X. Yu, D.B. Zhou, J.P. Ou, Multi-layer graphene-engineered cementitious composites with multifunctionality/intelligence. Compos. B Eng. 129, 221–232 (2017)CrossRefGoogle Scholar
  8. 8.
    B.G. Han, B.Z. Han, J.P. Ou, Experimental study on use of nickel powder-filled Portland cement-based composite for fabrication of piezoresistive sensors with high sensitivity. Sens. Actuators, A Phys. 149(1), 51–55 (2009)CrossRefGoogle Scholar
  9. 9.
    B.G. Han, B.Z. Han, X. Yu, Effects of the content level and particle size of nickel powder on the piezoresistivity of cement-based composites/sensors. Smart Mater. Struct. 19(6), 065012 (2010)CrossRefGoogle Scholar
  10. 10.
    B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, X. Yu, J.P. Ou, Review of nanocarbon-engineered multifunctional cementitious composites. Compos. A Appl. Sci. Manuf. 70, 69–81 (2015)CrossRefGoogle Scholar
  11. 11.
    M.Q. Sun, R.J.Y. Liew, M.H. Zhang, W. Li, Development of cement-based strain sensor for health monitoring of ultra high strength concrete. Constr. Build. Mater. 65, 630–637 (2014)CrossRefGoogle Scholar
  12. 12.
    S.W. Sun, X. Yu, B.G. Han, Sensing mechanism of self-monitoring CNTs cementitious composite. J. Testing Eval. 42(1), 1–5 (2014)CrossRefGoogle Scholar
  13. 13.
    B.G. Han, J.P. Ou, Embedded piezoresistive cementbased stress/strain sensor. Sens. Actuators, A Phys. 138(2), 294–298 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Yehia, C.Y. Tuan, D. Ferdon, B. Chen, Conductive concrete overlay for bridge deck deicing: mixture proportioning, optimization, and properties. ACI Mater. J. 97(2), 172–181 (2000)Google Scholar
  15. 15.
    S.F. Dong, B.G. Han, J.P. Ou, Z. Li, L.Y. Han, X. Yu, Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete. Cement Concr. Compos. 72, 48–65 (2016)CrossRefGoogle Scholar
  16. 16.
    K. Sedláčková, P. Lobotka, I. Vávra, G. Radnóczi, Structural, electrical and magnetic properties of carbon-nickel composite thin films. Carbon 43(10), 2192–2198 (2005)CrossRefGoogle Scholar
  17. 17.
    L.Q. Zhang, S.Q. Ding, L.W. Li, S.F. Dong, D.N. Wang, X. Yu, B.G. Han, Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials. Compos. A Appl. Sci. Manuf. 109, 303–320 (2018)CrossRefGoogle Scholar
  18. 18.
    J.P. Ou, B.G. Han, Piezoresistive cement-based strain sensors and self-sensing concrete components. J. Intell. Mater. Syst. Struct. 20, 329–336 (2008)Google Scholar
  19. 19.
    B.G. Han, L.Q. Zhang, S.W. Sun, X. Yu, X.F. Dong, T.J. Wu, J.P. Ou, Electrostatic self-assembly carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Compos. A Appl. Sci. Manuf. 79, 103–115 (2015)CrossRefGoogle Scholar
  20. 20.
    A.L. Materazzi, F. Ubertini, A. D’Alessandro, Carbon nanotube cement-based transducers for dynamic sensing of strain. Cement Concr. Compos. 37, 2–11 (2013)CrossRefGoogle Scholar
  21. 21.
    H.C. Fu, M. Seckin, M.A. Erki, Review of effects of loading rate on concrete in compression. J. Struct. Eng. 117(12), 3645–3659 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Baoguo Han
    • 1
    Email author
  • Siqi Ding
    • 2
  • Jialiang Wang
    • 1
  • Jinping Ou
    • 1
  1. 1.School of Civil EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations