Nano-ZrO2-Engineered Cementitious Composites

  • Baoguo HanEmail author
  • Siqi Ding
  • Jialiang Wang
  • Jinping Ou


Nano-ZrO2 particles with high strength and toughness are added into cementitious composites to reinforce/modify their properties/performances. The effects of the content of nano-ZrO2 as well as curing method on the mechanical/electrical properties/performances and durability of cementitious composites are investigated. The enhancement mechanisms are analyzed through X-ray diffraction, nuclear magnetic resonance, thermogravimetry, and scanning electron microscope tests. Experimental results show that the nano-ZrO2 significantly enhances the mechanical/electrical properties/performances and durability of cementitious composites due to its high strength and toughness in combination with small size and filling effects.


Nano-ZrO2 Cementitious composites Curing method Mechanical/electrical properties/performances Durability Mechanisms 


  1. 1.
    C. Gogtas, H.F. Lopez, K. Sobolev, Effect of nano-YSZ and nano-ZrO2, additions on the strength and toughness behavior of self-flowing alumina castables. Ceram. Int. 42(1), 1847–1855 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Jin, Application of Cellular Automata to the Simulation Test of Concrete Under Dynamic Load (Tianjin University, 2010)Google Scholar
  3. 3.
    Y.F. Ruan, B.G. Han, X. Yu, Z. Li, J.L. Wang, S.F. Dong, J.P. Ou, Mechanical behaviors of nano-zirconia reinforced reactive powder concrete under compression and flexure. Constr. Build. Mater. 162, 663–673 (2018)CrossRefGoogle Scholar
  4. 4.
    T. Ji, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem. Concr. Res. 35(10), 1943–1947 (2005)CrossRefGoogle Scholar
  5. 5.
    Q. Li, A.D. Deacon, N.J. Coleman, The impact of zirconium oxide nanoparticles on the hydration chemistry and biocompatibility of white Portland cement. Dent. Mater. J. 32(5), 808–815 (2013)CrossRefGoogle Scholar
  6. 6.
    G.H. Li, B. Gao, Effect of level SiO2 and level CaCO3 on concrete performance. J. China Railway Soc. 28(1), 131–136 (2006)Google Scholar
  7. 7.
    W. Li, Z. Luo, C. Long, Experimental study on the dynamic mechanical performance of nanomodified recycled aggregate concrete. J. Hunan Univ. 44(9), 92–99 (2017)Google Scholar
  8. 8.
    D. Zheng, Q. Li, An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity. Eng. Fract. Mech. 71(16), 2319–2327 (2004)CrossRefGoogle Scholar
  9. 9.
    S.A. Kaplan, Factors affecting the relationship between rate of loading and measured compressive strength of concrete. Mag. Concr. Res. 32(111), 79–88 (1980)CrossRefGoogle Scholar
  10. 10.
    J.P. Fu, J.L. Yang, L.K. Yin, W. Liu, J.R. Wang, Z.G. Chen, Dynamic properties of zirconia ceramic bullets under high-speed impact. J. Chin. Ceram. Soc. 44(2), 346–352 (2016)Google Scholar
  11. 11.
    B.G. Han, L.Q. Zhang, S.Z. Zeng, S.F. Dong, X. Yu, R. Yang, J.P. Ou, Nano-core effect in nano-engineered cementitious composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRefGoogle Scholar
  12. 12.
    M.J. Forrestal, T.W. Wright, W. Chen, The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test. Int. J. Impact Eng. 34(3), 405–411 (2007)CrossRefGoogle Scholar
  13. 13.
    B.G. Han, S.F. Dong, J.P. Ou, C.Y. Zhang, Y.L. Wang, X. Yu, S.Q. Ding, Microstructure related mechanical behaviors of short-cut super-fine stainless wire reinforced reactive powder concrete. Mater. Des. 96, 16–26 (2016)CrossRefGoogle Scholar
  14. 14.
    B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, X. Yu, J.P. Ou, Review of nanocarbon-engineered multifunctional cementitious composites. Compos. A 70(70), 69–81 (2015)CrossRefGoogle Scholar
  15. 15.
    Z. Li, S.Q. Ding, X. Yu, B.G. Han, J.P. Ou, Multifunctional cementitious composites modified with nano titanium dioxide: a review. Compos. A Appl. Sci. Manuf. 111, 115–137 (2018)CrossRefGoogle Scholar
  16. 16.
    L.Q. Zhang, S.Q. Ding, S.W. Sun, B.G. Han, X. Yu, Nano-scale behavior and nano-modification of cement and concrete material, in Advanced Research on Nanotechnology for Civil Engineering Applications, ed. by A. Khitab, W. Anwar (IGI Global, USA, 2016), pp. 28–79Google Scholar
  17. 17.
    L.Q. Zhang, N. Ma, Y.Y. Wang, B.G. Han, X. Cui, X. Yu, J.P. Ou, Study on the reinforcing mechanisms of nano silica to cement-based materials with theoretical calculation and experimental evidence. J. Compos. Mater. 50(29), 4135–4146 (2016)CrossRefGoogle Scholar
  18. 18.
    F.Y. Wei, Y.N. Lv, X.H. Lan, Z.Z. Xu, Effect of low Ca/Si ratio of C-S-H gels on restraining expansion due to alkali-aggregate reaction. J. Nanjing Univ. Technol. 26(4), 98–102 (2004)Google Scholar
  19. 19.
    J.H. Liu, Effects of curing systems on properties of high volume fine mineral powder RPC and appearance of hydrates. J. Wuhan Univ. Technol. 25(4), 619–623 (2010)CrossRefGoogle Scholar
  20. 20.
    B.G. Han, Z. Li, L.Q. Zhang, S.Z. Zeng, X. Yu, B. Han, J.P. Ou, Reactive powder concrete reinforced with nano SiO2-coated TiO2. Constr. Build. Mater. 148, 104–112 (2017)CrossRefGoogle Scholar
  21. 21.
    Z.J. Wang, X.C. Pu, Experimental study on the uniaxial compression properties and the stress-strain curves of UHS and HPC. J. Chongqing Jianzhu Univ. 22, 31–37 (2010)Google Scholar
  22. 22.
    X.Q. Fan, S.W. Hu, J. Lu, Experimental research on double-K fracture toughness of non-standard three point bending concrete beam. J. Build. Struct. 33(10), 152–157 (2012)Google Scholar
  23. 23.
    S.L. Xu, J. Li, Study on initial cracking criterion for I-II mixed mode crack and influence of crack-depth ratio in concrete by using four-point shearing beams. J. Hydraul. Eng. 42(9), 1110–1116 (2011)Google Scholar
  24. 24.
    S.U. Al-Dulaijan, A.H.J. Al-Tayyib, M.M. Al-Zahrani, G. Parry-Jones, A. Al-Mana, Si MAS-NMR study of hydrated cement paste and mortar made with and without silica fume. J. Am. Ceram. Soc. 78(2), 342–346 (2010)CrossRefGoogle Scholar
  25. 25.
    H. Justnes, I. Meland, J.O. Bjoergum, J. Krane, T. Skjetne, NMR-a powerful tool in cementand concrete research. Adv. Cem. Res. 3, 105 (1990)CrossRefGoogle Scholar
  26. 26.
    J.L. Wang, B.G. Han, Z. Li, X. Yu, X.F. Dong, Effect investigation of nanofillers on C-S-H gel structure with Si NMR spectra. J. Mater. Civil Eng. 31(1), 04018352(12pp) (2019)CrossRefGoogle Scholar
  27. 27.
    L. Wang, Z. He, B. Zhang, X. Cai, Quantity analysis of fly ash-cement hydration by Si MAS NMR. J. Chin. Ceram. Soc. 38(11) (2010)Google Scholar
  28. 28.
    K.O. Kjellsen, Heat curing and post-heat curing regimes of high-performance concrete: influence on microstructure and C-S-H composition. Cem. Concr. Res. 26(2), 295–307 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Baoguo Han
    • 1
    Email author
  • Siqi Ding
    • 2
  • Jialiang Wang
    • 1
  • Jinping Ou
    • 1
  1. 1.School of Civil EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations