Graphene-Engineered Cementitious Composites

  • Baoguo HanEmail author
  • Siqi Ding
  • Jialiang Wang
  • Jinping Ou


Multi-layer graphenes with two-dimensional structure are added into cementitious composites to develop multifunctional/smart materials. The effects of graphene content on the rheology, mechanical properties/performances, durability, and functional/smart properties/performances of fresh and hardened cementitious composites are investigated. The underlying reinforcement/modification mechanisms are also analyzed through X-ray diffraction, nuclear magnetic resonance, thermogravimetry and scanning electron microscope, and electromagnetic parameter tests as well as theoretical calculation. Experimental results show that the incorporation of multi-layer graphenes makes obvious changes in the properties/performances of fresh and hardened cementitious composites due to their layer structure in combination with the essential characteristics of nano-carbon materials.


Graphene Multi-layer Cementitious composites Properties/performances Mechanisms 


  1. 1.
    Q.F. Zheng, B.G. Han, X. Cui, X. Yu, J.P. Ou, Graphene-engineered cementitious composites: small makes a big impact. Nanomater. Nanotechnol. 7, 1–18 (2017)Google Scholar
  2. 2.
    Y. Cui, S.I. Kundalwal, S. Kumar, Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313–333 (2016)CrossRefGoogle Scholar
  3. 3.
    B.G. Han, Q.F. Zheng, S.W. Sun, S.F. Dong, L.Q. Zhang, X. Yu, J.P. Ou, Enhancing mechanisms of multi-layer graphenes to cementitious composites. Compos. A Appl. Sci. Manuf. 101, 143–150 (2017)CrossRefGoogle Scholar
  4. 4.
    C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene. Carbon 8, 902–907 (2008)Google Scholar
  5. 5.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  6. 6.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  7. 7.
    Z. Li, S.Q. Ding, X. Yu, B.G. Han, J.P. Ou, Multifunctional cementitious composites modified with nano titanium dioxide: A review. Compos. A Appl. Sci. Manuf. 111, 115–137 (2018)CrossRefGoogle Scholar
  8. 8.
    B.G. Han, L.Q. Zhang, S.Z. Zeng, S.F. Dong, X. Yu, R.W. Yang, J.P. Ou, Nano-core effect in nano-engineered cementitous composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRefGoogle Scholar
  9. 9.
    B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, X. Yu, J.P. Ou, Review of nanocarbon-engineered multifunctional cementitious composites. Compos. A Appl. Sci. Manuf. 70(70), 69–81 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Lopez, L.F. Kahn, K.E. Kurtis, High-strength self-curing low-shrinkage concrete for pavement applications. Int. J. Pavement Eng. 11(5), 333–342 (2010)CrossRefGoogle Scholar
  11. 11.
    W.W. Li, W.M. Ji, Y. Liu, F. Xing, Y.K. Liu, Damping property of a cement-based material containing carbon nanotube. J. Nanomater. 015(23) (2015)Google Scholar
  12. 12.
    J.L. Luo, Z.D. Duan, G.J. Xian, Q.Y. Li, T.J. Zhao, Damping performances of carbon nanotube reinforced cement composite. Mech. Compos. Mater. Struct. 22(3), 224–232 (2015)CrossRefGoogle Scholar
  13. 13.
    X. Cui, S.W. Sun, B.G. Han, X. Yu, J. Ouyang, S.Z. Zeng, J.P. Ou, Mechanical, thermal and electromagenetic properties of nano graphite platelets modified cementitious composites. Compos. A Appl. Sci. Manuf. 93, 49–58 (2017)CrossRefGoogle Scholar
  14. 14.
    B.G. Han, K. Zhang, X. Yu, E. Kwon, J.P. Ou, Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites. Cement Concr. Compos. 34, 794–800 (2012)CrossRefGoogle Scholar
  15. 15.
    B.G. Han, S.Q. Ding, X. Yu, Intrinsic self-sensing concrete and structures: A review. Measurement 59, 110–128 (2015)CrossRefGoogle Scholar
  16. 16.
    B.G. Han, X. Yu. J.P. Ou, Self-sensing Concrete in Smart Structures (Elsevier, Amsterdam, 2014)Google Scholar
  17. 17.
    S.F. Dong, B.G. Han, J.P. Ou, Z. Li, L.Y. Han, X. Yu, Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete. Cement Concr. Compos. 72, 48–65 (2016)CrossRefGoogle Scholar
  18. 18.
    J.M. Torrents, T.O. Mason, A. Peled, S.P. Shah, E.J. Garboczi, Analysis of the impedance spectra of short conductive fiber-reinforced composites. J. Mater. Sci. 36(16), 4003–4012 (2001)CrossRefGoogle Scholar
  19. 19.
    S. W. Sun. Multifunctionality and smartness of multi-layer graphene filled cementitious composites. Dissertation for the Doctoral Degree in Engineering. Harbin Institute of Technology, Harbin, China, 2017Google Scholar
  20. 20.
    S.W. Sun, S.Q. Ding, B.G. Han, S.F. Dong, X. Yu, D.B. Zhou, J.P. Ou, Multi-layer graphene-engineered cementitious composites with multifunctionality/intelligence. Compos. B Eng. 129, 221–232 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Hong, L. Li, X.C. Zeng, J. Zhang, Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering. Nanoscale 7(14), 6286–6294 (2015)CrossRefGoogle Scholar
  22. 22.
    C. Liu, Z. Yu, D. Neff, A. Zhang, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)CrossRefGoogle Scholar
  23. 23.
    C. Min, D.M. Yu, J.Y. Cao, G.L. Wang, L.H. Feng, A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55(2), 116–125 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45(7), 1446–1452 (2007)CrossRefGoogle Scholar
  25. 25.
    M. Itoh, J.R. Liu, T. Horikawa, K.I. Machida, Electromagnetic wave absorption properties of nanocomposite powders derived from intermetallic compounds and amorphous carbon. J. Alloy. Compd. 408, 1400–1403 (2006)CrossRefGoogle Scholar
  26. 26.
    B.G. Han, L.Q. Zhang, J.P. Ou, Smart and Multifunctional Concrete toward Sustainable Infrastructures (Springer, Berlin, 2017)CrossRefGoogle Scholar
  27. 27.
    B.G. Han, Y.Y. Wang, S.F. Dong, L.Q. Zhang, S.Q. Ding, X. Yu, J.P. Ou, Smart concrete and structures: a review. J. Intell. Mater. Syst. Struct. 26(1), 1303–1345 (2015)CrossRefGoogle Scholar
  28. 28.
    B.G. Han, L.Q. Zhang, S.W. Sun, X. Yu, X.F. Dong, T.J. Wu, J.P. Ou, Electrostatic self-assembly carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Compos. A Appl. Sci. Manuf. 79, 103–115 (2015)CrossRefGoogle Scholar
  29. 29.
    S.W. Sun, B.G. Han, S. Jiang, X. Yu, Y.L. Wang, H.Y. Li, J.P. Ou, Nano graphite platelets-enabled piezoresistive cementitious composites for structural health monitoring. Constr. Build. Mater. 136, 314–328 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Baoguo Han
    • 1
    Email author
  • Siqi Ding
    • 2
  • Jialiang Wang
    • 1
  • Jinping Ou
    • 1
  1. 1.School of Civil EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations