Advertisement

A Multi-step Quick Scan for Options and Limitations of Biogenic Resources—From Agricultural Statistics to CNG tuk tuks in India

  • A. BrosowskiEmail author
  • B. Sumfleth
  • T. Kussin
  • K. Schaubach
  • D. Thrän
  • M. Nelles
  • K. Oehmichen
Conference paper

Abstract

India shows a rapid development—increasing population, economic growth, increasing energy demand, a strong government, ambitious goals in reducing GHG emissions and a sustainable integration of renewable energies into the Indian daily life are only some of the efforts. One of the major challenges is the transport sector as a main air polluter. Here, an approach is needed to find promising starting points for a significant improvement. This article describes a multi-step Quick Scan to evaluate chances and limitations from the perspective of biogenic resources. In this context, the approach moderates a pathway from general national statistics to a preferential sustainable application of a biogenic resource on a regional level. Accordingly, the Quick Scan provides data for the following argumentation: India’s top ten crops are headed by sugar cane. Besides sugar as the main product, the by-product press mud is suitable for fermentation in biogas plants. Bottled into cylinders, around 4.7–5.6 million tuk tuks could drive 5,000 km with biomethane/CNG, theoretically. In comparison with petrol, the use of biomethane for transport can mitigate up to 85% of CO2-eq emissions. To mobilise parts of this potential, preference regions with best conditions have to be found. More than 40% of national production can be found in the state Uttar Pradesh (U.P.). A high density of sugar mills in western U.P. leads to high press mud potentials in this region. In a distance of 50 km, more than 500,000 t press mud is achievable as a maximum. The findings deliver essential base data for a more detailed feasibility assessment and can support decision-making crucially.

Keywords

Biomass supply Biomass availability Press mud potentials Biomethane CNG Waste management Bio-economy 

Notes

Acknowledgements

This work is financed by German Ministry for Economic Cooperation and Development and the German Ministry of Food and Agriculture and supported by German Biogas Association in cooperation with Indian Biogas Association.

References

  1. Banerjee, M., & Dutta, G. (2016). Grid interactive renewable power in India—A review. Current Sustainable/Renewable Energy Reports, 3(3), 43–52.CrossRefGoogle Scholar
  2. Binod Daga, Indian Biogas Association. (2017). Personal interview on biogas sector in India, Gurugram.Google Scholar
  3. Brosowski, A., Hösel, J., Hauschild, S., Naumann, K., & Thrän, D. (2017). Review of technical glycerol potential from biodiesel production and availability for improved cascading in Europe. [November 02, 2017]. Available from: https://www.researchgate.net/publication/316472077_Review_of_technical_glycerol_potential_from_biodiesel_production_and_availability_for_improved_cascading_in_Europe.
  4. European Commission. (2009). Richtlinie 2009/28/EG des Europäischen Parlaments und des Rates vom 23. April 2009 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen und zur Änderung und anschließenden Aufhebung der Richtlinien 2001/77/EG und 2003/30/EG.Google Scholar
  5. FAO, Food and Agriculture Organisation. (2017). Production quantity of agricultural crops in India in 2014. [November 01, 2017]. Available from: http://www.fao.org/faostat/en/#data/QC.
  6. Gaurav Kedia, Indian Biogas Association. (2017). Personal interview on biogas sector in India, Gurugram.Google Scholar
  7. Goel, R., Mohan, D., Guttikunda, S. K., & Tiwari, G. (2016). Assessment of motor vehicle use characteristics in three Indian cities. Transportation Research Part D: Transport and Environment, 2015(44), 254–265.Google Scholar
  8. Hiloidhari, M., Das, D., & Baruah, D. C. (2014). Bioenergy potential from crop residue biomass in India. Renewable and Sustainable Energy Reviews, 32, 504–512.CrossRefGoogle Scholar
  9. IEA. (2017). Key World Energy Statistics 2017. [November 03, 2017]. Available from: http://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf.
  10. India Sugar Mills Association (ISMA). (2016a). List of sugar mills in India 2016, New Delhi.Google Scholar
  11. India Sugar Mills Association (ISMA). (2016b). Handbook of sugar statistics, 2015–2016, New Delhi.Google Scholar
  12. India Sugar Mills Association (ISMA). (2017a). Sugar process flow chart. [November 01, 2017]. Available from: http://www.indiansugar.com/Sugar.aspx.
  13. India Sugar Mills Association (ISMA). (2017b). Virtual sugar mill. [November 02, 2017]. Available from: http://www.indiansugar.com/VirtualMill/ISMA-Sugar-VirtualMill.html.
  14. International Energy Agency (IEA). (2017). Energy balance for India. [November 03, 2017]. Available from: https://www.iea.org/Sankey/#?c=India&s=Balance.
  15. Janke, L., Leite, A., Nikolausz, M., Schmidt, T., Liebetrau, J., Nelles, M., et al. (2015). Biogas production from sugarcane waste: Assessment on kinetic challenges for process designing. International Journal of Molecular Sciences, 16(9), 685–703.CrossRefGoogle Scholar
  16. Kaltschmitt, M., Hartmann, H., & Hofbauer, H. (Eds.). (2016). Energie aus Biomasse: Grundlagen, Techniken und Verfahren (3rd ed.). Berlin, Heidelberg: Springer Vieweg.Google Scholar
  17. Majer, S., Oehmichen, K., Kirchmeyr, F., & Scheidl, S. (2015). Calculation of GHG emission caused by biomethane: BIOSURF Deliverable 5.3. Available from: http://www.biosurf.eu/wordpress/wp-content/uploads/2015/07/BIOSURF-D5.3.pdf.
  18. MNRE, Ministry of New and Renewable Energy. (2017). Annual Report 2016–2017, New Delhi.Google Scholar
  19. Mohan, D., Tsimhoni, O., Sivak, M., & Flannagan, M. J. (2009). Road safety in India: Challenges and opportunities. Ann Arbor, USA.Google Scholar
  20. MoRTH, Ministry of Road Transport and Highway. (2013). Road transport year book 2011–12, New Delhi.Google Scholar
  21. MOSPI, Ministery of Statistics and Programme Implementation. (2017). Statistical year book India 2017: Agriculture—Production of principal crops. [November 02, 2017]. Available from: http://www.mospi.gov.in/statistical-year-book-india/2017/177.
  22. Thrän, D. (2015). Smart bioenergy: Technologies and concepts for a more flexible bioenergy provision in future energy systems. Cham: Springer International Publishing.CrossRefGoogle Scholar
  23. Thrän, D., Bunzel, K., Seyfert, U., Zeller, V., Buchhorn, M, Müller, K., et al. (2017). Global and regional spatial distribution of biomass global and regional spatial distribution of biomass potentials: Status quo and options for specification. [November 02, 2017]. Available from: https://www.dbfz.de/fileadmin/user_upload/Referenzen/DBFZ_Reports/DBFZ_Report_7.pdf.
  24. Westerkamp, T., Reinelt, T., Oehmichen, K., Ponitka, J., Naumann, K. (2014). DBFZ Report Nr. 20: Klimaeffekte von Biomethan. Available from: https://www.dbfz.de/fileadmin/user_upload/Referenzen/DBFZ_Reports/DBFZ_Report_20.pdf.
  25. World Bank. (2017). The World Bank in India. [November 03, 2017]. Available from: http://www.worldbank.org/en/country/india.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • A. Brosowski
    • 1
    Email author
  • B. Sumfleth
    • 1
  • T. Kussin
    • 1
  • K. Schaubach
    • 1
  • D. Thrän
    • 1
    • 2
  • M. Nelles
    • 1
    • 3
  • K. Oehmichen
    • 1
  1. 1.Deutsches Biomasseforschungszentrum gemeinnützige GmbHLeipzigGermany
  2. 2.Helmholtz Centre for Environmental Research—UFZLeipzigGermany
  3. 3.University of RostockRostockGermany

Personalised recommendations