Skip to main content

Harnessing Remote Sensing for Civil Engineering: Then, Now, and Tomorrow

  • Conference paper
  • First Online:
Book cover Applications of Geomatics in Civil Engineering

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 33))

Abstract

Despite enormous advances in remote sensing data over the past 20 years, harnessing and exploiting that data by the Civil Engineering community has been relatively limited. To understand the full potential of such data, first this paper briefly recaps the Civil Engineering community’s engagement with remote sensing for dike monitoring and post-earthquake damage assessment. Next, the state of the art is introduced with special considerations for recent advances in quality, affordability, accessibility, and equipment size; the role of national aerial laser scanning data collection programs; and the increasing applicability of remote sensing to a wide range Civil Engineering applications. Finally, the paper concludes with a vision of how Civil Engineering can better benefit from existing technologies not regularly exploited today, as well as the logistical challenges of storing and integrating such data in a computationally meaningful manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shekhar S, Chawla S (2003) Spatial databases: a tour. Pearson, London

    Google Scholar 

  2. Alspaugh D (2004) A brief history of photogrammetry. In: McGlone JC (ed) Manual of photogrammetry. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, pp 1–12

    Google Scholar 

  3. van Heuvel T, Hillen R (1995) Coastal management with GIS in the Netherlands. EARSeL Adv Remote Sens 4:27–34

    Google Scholar 

  4. Misdorp R, Steyaert F, de Ronde J, Hallie F (1989) Monitoring in the western part of the Dutch Wadden: sea—sea level and morphology. Helgoländer Meeresuntersuchungen 43:333–345

    Article  Google Scholar 

  5. Eleveld MA (1999) Exploring coastal morphodynamics of Ameland (the Netherlands) with remote sensing monitoring techniques and dynamic modelling in GIS. PhD thesis. Universiteit van Amsterdam

    Google Scholar 

  6. Tockner K, Schiemer F, Ward JV (1998) Conservation by restoration: the management concept for a river-floodplain system on the Danube River in Austria. Aquat Conserv Mar Freshw Ecosyst 8:71–86

    Article  Google Scholar 

  7. Hodgson ME, Bresnahan P (2004) Accuracy of airborne lidar-derived elevation. Photogramm Eng Remote Sens 70:331–339

    Article  Google Scholar 

  8. Hanssen RF, Van Leijen FJ (2008) Monitoring deformation of water defense structures using satellite radar inferometry. In: Measuring the changes: joint symposia—13th FIG symposium on deformation measurements and analysis and 4th IAG symposium on geodesy for geotechnical and structural engineering, Lisbon. https://doi.org/10.1109/RADAR.2008.4720874

  9. Bishop MJ, Dunbar JB, Peyman-Dove LP (2003) Integration of remote sensing (LiDAR, electromagnetic conductivity) and geologic data toward the condition assessment of levee systems. In: Ehlers M (ed) Proceedings SPIE 4886, remote sensing for environmental monitoring, GIS applications, and geology II, pp 400–407. SPIE

    Google Scholar 

  10. Givehchi M, Vrijling JK, Hartmann A, Van Gelder PHAJM, Van Baars S (2002) Application of remotely sensed data for detection of seepage in dikes. In: Navalgund RR, Nayak SR, Sudarshana R, Nagaraja R, Ravindran S (eds) Proceedings of the ISPRS commission VII symposium: resource and environmental monitoring, Hyderabad, India

    Google Scholar 

  11. Kühn F, Brose F (1998) Die Auswertung von Fernerkundungsdaten zur Deichzustandseinschätzung [The analysis of remote sensing data for dike condition assessment]. Brand Geowissenschaftliche Beiträge 5:59–63

    Google Scholar 

  12. van der Schrier JS, Slob S, Straeter J, Hack HRGK, Rupke J (2004) Slim kijken naar dijken: patroon en anomalie herkenning door combinatie van verschillende air-borne remote sensing technieken [Looking intelligently at dikes: pattern and anomaly detection by combining various air-borne remote sensing techniques]. In: Kennisdag Waterkeringsbeheer en Remote Sensing - STOWA

    Google Scholar 

  13. Hossain A, Easson G, Hasan K (2006) Detection of levee slides using commercially available remotely sensed data. Environ Eng Geosci 12:235–246

    Article  Google Scholar 

  14. Azad Hossain AKM, Easson G (2012) Predicting shallow surficial failures in the Mississippi River levee system using airborne hyperspectral imagery. Geomat Nat Hazards Risk 3:55–78

    Article  Google Scholar 

  15. Swart LMT (2007) Remote sensing voor inspectie van waterkeringen [Remote sensing for inspection of flood defences]. Swartvast, Nieuw-Vennep, The Netherlands

    Google Scholar 

  16. Mahrooghy M, Aanstoos J, Hasan K, Prasad S, Younan NH (2011) Effect of vegetation height and volume scattering on soil moisture classification using synthetic aperture radar (SAR) images. In: 2011 IEEE Applied imagery pattern recognition workshop (AIPR). IEEE, pp 1–5

    Google Scholar 

  17. Moser GM, Zomer WS (2006) Inspectie van Waterkeringen, een Overzicht van Meettechnieken [Inspection of water barriers, an overview of measurement techniques]. Stowa, Utrecht, The Netherlands

    Google Scholar 

  18. Cundill SL (2016) Investigation of remote sensing for dike inspection. http://purl.org/utwente/doi/10.3990/1.9789036540360

  19. Cohen S, Degnan J, Bufton J, Garvin J, Abshire J (1987) The geoscience laser altimetry/ranging system. IEEE Trans Geosci Remote Sens GE-25:581–592

    Article  Google Scholar 

  20. Ridgway JR, Minster JB, Williams N, Bufton JL, Krabill WB (1997) Airborne laser altimeter survey of Long Valley, California. Geophys J Int 131:267–280

    Article  Google Scholar 

  21. Murakami H, Nakagawa K, Hasegawa H, Shibata T, Iwanami E (1999) Change detection of buildings using an airborne laser scanner. ISPRS J Photogramm Remote Sens 54:148–152

    Article  Google Scholar 

  22. NOAA (2001) NOAA Conducts more flights over World Trade Center site. http://www.noaanews.noaa.gov/stories/s798b.htm

  23. FEMA (2008) Geospatial data coordination Appendix B: FEMA data collection in U.S. urban areas

    Google Scholar 

  24. National Geospatial-Intelligence Agency. National Geospatial-Intelligence Agency—LiDAR data over core areas of major cities

    Google Scholar 

  25. Steinle E, Bähr H (2002) Detectability of urban changes from airborne laserscanning data. In: Navalgund RR, Nayak SR, Sudarshana R, Nagaraja R, Ravindran S (eds) Proceedings of the ISPRS commission VII symposium: resource and environmental monitoring, Hyderabad, India

    Google Scholar 

  26. Rehor M, Voegtle T (2008) Improvement of building damage detection and classification based on laser scanning data by integrating spectral information. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVII:1599–1605

    Google Scholar 

  27. Shen Y, Wu L, Wang Z (2010) Identification of inclined buildings from aerial LIDAR Data for disaster management. In: 2010 18th international conference on geoinformatics. IEEE, pp 1–5

    Google Scholar 

  28. Borfecchia F, Pollino M, De Cecco L, Lugari A, Martini S, La Porta L, Ristoratore E, Pascale C (2010) Active and passive remote sensing for supporting the evaluation of the urban seismic vulnerability. Ital J Remote Sens 42:129–141

    Article  Google Scholar 

  29. Moya L, Yamazaki F, Liu W, Yamada M (2018) Detection of collapsed buildings from lidar data due to the 2016 Kumamoto earthquake in Japan. Nat Hazards Earth Syst Sci 18:65–78

    Article  Google Scholar 

  30. Toprak S, Nacaroglu E, Koc AC, O’Rourke TD, Hamada M, Cubrinovski M, Van Ballegooy S (2018) Comparison of horizontal ground displacements in Avonside area, Christchurch from air photo, LiDAR and satellite measurements regarding pipeline damage assessment. Bull Earthq Eng 1–18

    Google Scholar 

  31. University of Washington Rapid Experimental Facility. https://rapid.designsafe-ci.org/

  32. Aruga K, Sessions J, Akay AE (2005) Application of an airborne laser scanner to forest road design with accurate earthwork volumes. J For Res 10:113–123

    Article  Google Scholar 

  33. Fekete S, Diederichs M, Lato M (2010) Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels. Tunn Undergr Sp Technol 25:614–628

    Article  Google Scholar 

  34. Tong X, Liu X, Chen P, Liu S, Luan K, Li L, Liu S, Liu X, Xie H, Jin Y, Hong Z (2015) Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sens 7:6635–6662

    Article  Google Scholar 

  35. Wang J, Sun W, Shou W, Wang X, Wu C, Chong H-Y, Liu Y, Sun C (2015) Integrating BIM and LiDAR for real-time construction quality control. J Intell Robot Syst 79:417–432

    Article  Google Scholar 

  36. Liu W, Chen S, Hauser E (2011) LiDAR-based bridge structure defect detection. Exp Tech 35:27–34

    Article  Google Scholar 

  37. Truong-Hong L, Laefer DF, Hinks T, Carr H (2013) Combining an angle criterion with voxelization and the flying voxel method in reconstructing building models from LiDAR data. Comput Civ Infrastruct Eng 28:112–129

    Article  Google Scholar 

  38. Lingua A, Piatti D, Rinaudo F (2008) Remote monitoring of a landslide using an integration of GB-INSAR and LIDAR techniques. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVII:361–366

    Google Scholar 

  39. Hobbs PRN, Gibson A, Jones L, Pennington C, Jenkins G, Pearson S, Freeborough K (2010) Monitoring coastal change using terrestrial LiDAR. Geol Soc Lond Spec Publ 345:117–127

    Article  Google Scholar 

  40. Wiley WC, McLaren IH (1955) Time-of-flight mass spectrometer with improved resolution. Rev Sci Instrum 26:1150–1157

    Article  Google Scholar 

  41. Brelstaff GJ, Parraga A, Troscianko T, Carr D (1995) Hyperspectral camera system: acquisition and analysis. In: Lurie JB, Pearson JJ, Zilioli E (eds) Proceedings Volume 2587, geographic information systems, photogrammetry, and geological/geophysical remote sensing, pp 150–159

    Google Scholar 

  42. CUBERT. www.cubert-gmbh.com/&#x200E

  43. Consumer Physics. SCiO for customers. https://www.consumerphysics.com/scio-for-consumers/

  44. Occipital: Structure sensor. https://structure.io/

  45. Vo A-V, Laefer DF, Bertolotto M (2016) Airborne laser scanning data storage and indexing: state-of-the-art review. Int J Remote Sens 37:6187–6204

    Article  Google Scholar 

  46. 1 foot Digital Elevation Model (DEM). https://data.cityofnewyork.us/City-Government/1-foot-Digital-Elevation-Model-DEM-/dpc8-z3jc/data

  47. Laefer DF, Fitzgerald M, Maloney EM, Coyne D, Lennon D, Morrish SW (2009) Lateral image degradation in terrestrial laser scanning. Struct Eng Int 19:184–189

    Article  Google Scholar 

  48. Chen S, Laefer DF, Byrne J, Natanzi AS (2017) The effect of angles and distance on image-based, three-dimensional re-constructions. In: 27th Annual European safety and reliability conference (ESREL 2017), Portoroz, Slovenia

    Google Scholar 

  49. Chen S, Laefer DF, Mangina E (2016) State of technology review of civilian UAVs. Recent Patents Eng 10:160–174

    Article  Google Scholar 

  50. Hinks T, Carr H, Laefer DF (2009) Flight optimization algorithms for aerial LiDAR capture for urban infrastructure model generation. J Comput Civ Eng 23:330–339

    Article  Google Scholar 

  51. Geiger AR (1992) Mid-infrared light hydrocarbon DIAL LIDAR

    Google Scholar 

  52. Trimble Navigation Limited (2005) Trimble GS Series 3D Scanner [Datasheet]

    Google Scholar 

  53. Leica Geosystems (2013) Leica ScanStation P20 industry’s best performing ultra-high speed scanner [Datasheet]

    Google Scholar 

  54. Truong-Hong L, Gharibi H, Garg H, Lennon D (2014) Equipment considerations for terrestrial laser scanning for civil engineering in urban areas. J Sci Res Rep 3:2002–2014

    Google Scholar 

  55. Schrock G BLK360 + ReCap Pro: collaboration for reality capture. http://www.xyht.com/lidarimaging/blk360-recap-pro/, (2017)

  56. O’Neill M, Swafford JM, McDermott J, Byrne J, Brabazon A, Shotton E, McNally C, Hemberg M (2009) Shape grammars and grammatical evolution for evolutionary design. In: Proceedings of the 11th annual conference on genetic and evolutionary computation—GECCO ’09, p 1035. ACM Press, New York, New York, USA

    Google Scholar 

  57. Höfle B, Hollaus M, Hagenauer J (2012) Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS J Photogramm Remote Sens 67:134–147

    Article  Google Scholar 

  58. Nayegandhi A, Brock JC, Wright CW, O’Connell MJ (2006) Evaluating a small footprint, waveform-resolving lidar over coastal vegetation communities. Photogramm Eng Remote Sens 72:1407–1417

    Article  Google Scholar 

  59. Parrish CE, Jeong I, Nowak RD, Smith RB (2011) Empirical comparison of full-waveform lidar algorithms. Photogramm Eng Remote Sens 77:825–838

    Article  Google Scholar 

  60. Parrish CE (2007) Vertical object extraction from full-waveform lidar data using a 3D wavelet based approach. PhD thesis. University of Wisconsin–Madison

    Google Scholar 

  61. Laefer DF, Truong-Hong L (2017) Toward automatic generation of 3D steel structures for building information modelling. Autom Constr 74:66–77

    Article  Google Scholar 

  62. Sherwin MA, Bucksbaum PH, Schmuttenmaer CA, Allen J, Biedron S, Carr L, Chamberlain M, Crowe T, DeLucia F, Hu Q, Jones B, Noordham B, Norris T, Orenstein J, Unterrainer K, Van der Meer L, Wilke I, Williams G, Zhang X-C, Cheville A, Markelz A, Parks B, Plancken P, Shan J, Austin B, Basov D, Citrin D, Grundfest W, Heinz T, Kono J, Mittleman D, Siegel P, Taylor T, Jones B, Markelz A, Martin M, Nelson K, Smith T, Williams G, Allen M, Averitt R, Brunel L, Heilweil T, Heyman J, Jepsen P, Kaind R, Leemans W, Mihaly L, Rangan C, Tom H, Wallace V, Zimdars D (2004) DOE-NSF-NIH workshop on opportunities in THz science, 12–14 Feb 2004, Washington D.C.

    Google Scholar 

  63. DOE/Argonne National Laboratory (2007) New T-ray source could improve airport security, cancer detection. https://www.sciencedaily.com/releases/2007/11/071126121732.htm

  64. Ho L, Müller R, Römer M, Gordon KC, Heinämäki J, Kleinebudde P, Pepper M, Rades T, Shen YC, Strachan CJ, Taday PF, Zeitler JA (2007) Analysis of sustained-release tablet film coats using terahertz pulsed imaging. J Control Release 119:253–261

    Article  Google Scholar 

  65. Federici JF, Gary D, Barat R, Zimdars D (2005) THz standoff detection and imaging of explosives and weapons. In: Saito TT (ed) Proceedings Volume 5781, optics and photonics in global homeland security, pp 75–84. SPIE

    Google Scholar 

  66. Ahi K, Anwar M (2016) Advanced terahertz techniques for quality control and counterfeit detection. In: Anwar MF, Crowe TW, Manzur T (eds) Proceedings SPIE 9856, Terahertz physics, devices, and systems X: advanced applications in industry and defense, p 98560G

    Google Scholar 

  67. Zimdars D, White JS, Stuk G, Chernovsky A, Fichter G, Williamson S (2006) Large area terahertz imaging and non-destructive evaluation applications. Insight—Non-Destruct Test Cond Monit 48:537–539

    Article  Google Scholar 

  68. Suzuki D, Oda S, Kawano Y (2017) A flexible terahertz scanner for omnidirectional imaging. In: 2017 42nd International conference on infrared, millimeter, and terahertz waves (IRMMW-THz), pp 1–2. IEEE

    Google Scholar 

  69. Mott MacDonald (2017) Unpublished report, Boulder Colorado

    Google Scholar 

  70. Anderson AR (2015) Health effects of cut gas lines and other petroleum product release incidents—Seven States, 2010–2012. Morb Mortal Wkly Rep 64:601–605

    Google Scholar 

  71. Tulloch M, Chapman M (2005) Mapping Ontario’s underground utilities. Ontario Prof Surv 24–27

    Google Scholar 

  72. Hamid-Lakzaeian F, Laefer DF (2016) An integrated octree-RANSAC technique for automated LiDAR building data segmentation for decorative buildings. In: Bebis G, Boyle R, Parvin B, Koracin D, Porikli F, Skaff S, Entezari A, Min J, Iwai D, Sadagic A, Scheidegger C, Isenberg T (eds) Advances in visual computing, pp 454–463. Springer International Publishing, Cham

    Chapter  Google Scholar 

  73. Iman Zolanvari SM, Laefer DF (2016) Slicing method for curved façade and window extraction from point clouds. ISPRS J Photogramm Remote Sens 119:334–346

    Article  Google Scholar 

  74. Rajagopal A, Chellappan K, Chandrasekaran S, Brown AP (2017) A machine learning pipeline for automated registration and classification of 3D lidar data. In: Palaniappan K, Doucette PJ, Seetharaman G, Stefanidis A (eds) Proceedings Volume 10199, Geospatial informatics, fusion, and motion video analytics VII, p 101990D

    Google Scholar 

  75. Vo A-V, Truong-Hong L, Laefer DF, Tiede D, D’Oleire-Oltmanns S, Baraldi A, Shimoni M, Moser G, Tuia D (2016) Processing of extremely high resolution LiDAR and RGB data: outcome of the 2015 IEEE GRSS data fusion contest—Part B: 3-D contest. IEEE J Sel Top Appl Earth Obs Remote Sens 9:5560–5575

    Article  Google Scholar 

  76. Soilán M, Truong-Hong L, Riveiro B, Laefer D (2018) Automatic extraction of road features in urban environments using dense ALS data. Int J Appl Earth Obs Geoinf 64:226–236

    Article  Google Scholar 

  77. Aljumaily H, Laefer DF, Cuadra D (2016) Big-data approach for three-dimensional building extraction from aerial laser scanning. J Comput Civ Eng 30:4015049

    Article  Google Scholar 

  78. Aljumaily H, Laefer DF, Cuadra D (2017) Urban point cloud mining based on density clustering and MapReduce. J Comput Civ Eng 31:4017021

    Article  Google Scholar 

  79. Yang H, Chen W, Qian T, Shen D, Wang J (2015) The extraction of vegetation points from LiDAR using 3D fractal dimension analyses. Remote Sens 7:10815–10831

    Article  Google Scholar 

  80. Yan L, Li Z, Liu H, Tan J, Zhao S, Chen C (2017) Detection and classification of pole-like road objects from mobile LiDAR data in motorway environment. Opt Laser Technol 97:272–283

    Article  Google Scholar 

  81. Vo A-V, Truong-Hong L, Laefer DF, Bertolotto M (2015) Octree-based region growing for point cloud segmentation. ISPRS J. Photogramm Remote Sens 104:88–100

    Article  Google Scholar 

  82. Truong-Hong L, Laefer DF (2014) Octree-based, automatic building façade generation from LiDAR data. Comput Des 53:46–61

    Google Scholar 

  83. Hinks T, Carr H, Truong-Hong L, Laefer DF (2013) Point cloud data conversion into solid models via point-based voxelization. J Surv Eng 139:72–83

    Article  Google Scholar 

  84. Wang X, Chong H-Y (2015) Setting new trends of integrated Building Information Modelling (BIM) for construction industry. Constr Innov 15:2–6

    Article  Google Scholar 

  85. Renaudin CP, Barbier B, Roriz R, Revel D, Amiel M (1994) Coronary arteries: new design for three-dimensional arterial phantoms. Radiology 190:579–582

    Article  Google Scholar 

  86. Boschert S, Rosen R (2016) Digital twin—the simulation aspect. In: Hehenberger P, Bradley D (eds) Mechatronic futures: challenges and solutions for mechatronic systems and their designers, pp 59–74. Springer International Publishing, Cham

    Google Scholar 

  87. Schleich B, Anwer N, Mathieu L, Wartzack S (2017) Shaping the digital twin for design and production engineering. CIRP Ann 66:141–144

    Article  Google Scholar 

  88. Glaessgen E, Stargel D (2012) The digital twin paradigm for future NASA and U.S. air force vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, pp 1–14

    Google Scholar 

  89. Reifsnider K, Majumdar P (2013) Multiphysics stimulated simulation digital twin methods for fleet management. In: 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. American Institute of Aeronautics and Astronautics, Reston, Virginia. https://doi.org/10.2514/6.2013-1578

  90. National Infrastructure Commission (2017) Data for the public good

    Google Scholar 

  91. Holstein WJ (2015) Virtual Singapore: creating an intelligent 3D model to improve experiences of residents, business and government. https://compassmag.3ds.com/en/8#/en/8/Cover-Story/VIRTUAL-SINGAPORE

  92. Laefer D (2016) Emerging city-scale damage prediction options for urban tunnelling. In: Structural analysis of historical constructions. CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742, pp 15–22

    Google Scholar 

  93. Sicilia A, Madrazo L, Pleguezuelos J (2014) Integrating multiple data sources, domains and tools in urban energy models using semantic technologies. In: 5th eeBDM workshop in ECPPM, Vienna, Austria

    Google Scholar 

  94. Technical University Berlin. Energy Atlas Berlin. http://energyatlas.energie.tu-berlin.de/

  95. Madrazo L. SEMANCO. http://semanco-project.eu

  96. Open Geospatial Consortium. CityGML. https://www.opengeospatial.org/standards/citygml

  97. Zhang J, Yu F, Li D, Hu Z (2014) Development and implementation of an industry foundation classes-based graphic information model for virtual construction. Comput Civ Infrastruct Eng 29:60–74

    Article  Google Scholar 

  98. Hallberg D, Tarandi V (2011) On the use of open Bim and 4D visualisation in a predictive life cycle management system for construction works. J Inf Technol Constr 16:445–466

    Google Scholar 

  99. Qin L, Deng X, Liu X (2011) Industry foundation classes based integration of architectural design and structural analysis. J Shanghai Jiaotong Univ 16:83–90

    Article  Google Scholar 

  100. de Laat R, van Berlo L (2011) Integration of BIM and GIS: the development of the CityGML GeoBIM extension. In: Kolbe TH, König G, Nagel C (eds) Advances in 3D geo-information sciences, pp. 211–225. Springer, Berlin, Heidelberg

    Google Scholar 

  101. Kolbe TH, Gröger G, Plümer L (2005) CityGML: Interoperable access to 3D city models. In: Geo-information for disaster management, pp 883–899. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  102. Miranda F, Doraiswamy H, Lage M, Wilson L, Hsieh M, Silva CT (2018) Shadow accrual maps: efficient accumulation of city-scale shadows over time. IEEE Trans Vis Comput Graph 1–1

    Google Scholar 

  103. Yang B, Fang L, Li Q, Li J (2012) Automated extraction of road markings from mobile lidar point clouds. Photogramm Eng Remote Sens 78:331–338

    Article  Google Scholar 

  104. Yu Y, Li J, Guan H, Jia F, Wang C (2015) Learning hierarchical features for automated extraction of road markings from 3-D mobile LiDAR point clouds. IEEE J Sel Top Appl Earth Obs Remote Sens 8:709–726

    Article  Google Scholar 

  105. Laefer DF, Abuwarda S, Vo A-V, Truong-Hong L, Gharibi H (2015) Aerial laser and photogrammetry survey of Dublin city collection record. https://geo.nyu.edu/catalog/nyu_2451_38684. https://doi.org/10.17609/N8MQ0N

  106. Laefer D, Vo V, Bertolotto M (2018) A spatio-temporal index for aerial full waveform laser scanning data. ISPRS J Photogramm Remote Sens 138:232–251

    Article  Google Scholar 

  107. Vo AV, Chauhan N, Laefer DF, Bertolotto M (2018) A 6-dimensional hilbert approach to index full waveform LiDAR data in a distributed computing environment. ISPRS Int Arch Photogramm Remote Sens Spatial Inf Sci XLII-4:671–678

    Article  Google Scholar 

  108. Vo AV, Konda N, Chauhan N, Aljumaily H, Laefer DF (2018) Lessons learned with laser scanning point cloud management in Hadoop hbase. In: Smith I., Domer B. (eds) Advanced computing strategies for engineering. EG-ICE 2018. Lecture notes in computer science, vol 10863. Springer, Cham, pp 231–253

    Chapter  Google Scholar 

  109. Carstoiu D, Lepadatu E, Gaspar M (2010) Hbase—non SQL database, performances evaluation. Int J Adv Comput Technol 2:42–52

    Google Scholar 

  110. Dean J, Ghemawat S (2008) MapReduce. Commun ACM 51:107

    Article  Google Scholar 

  111. Samet H (1990) The design and analysis of spatial data structures. Addison-Wesley Longman Publishing Co, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debra F. Laefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laefer, D.F. (2020). Harnessing Remote Sensing for Civil Engineering: Then, Now, and Tomorrow. In: Ghosh, J., da Silva, I. (eds) Applications of Geomatics in Civil Engineering. Lecture Notes in Civil Engineering , vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-13-7067-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7067-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7066-3

  • Online ISBN: 978-981-13-7067-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics