Skip to main content

Nucleic Acid Amplification Strategy-Based Nanopore Sensors

  • Chapter
  • First Online:
  • 804 Accesses

Abstract

Nanopore sensing has developed into a powerful tool for single-molecule analysis in a rapid, low-cost, and label-free way. Generally, nanopores include biological nanopores , solid-state nanopores, and hybrid nanopores . Over the past two decades, nanopores have been used for a wide range of applications including gene sequencing and detection of various analytes. To improve the sensitivity of the nanopore sensors, signal amplification technologies, including isothermal amplification and thermocycling amplification, have been introduced into the nanopore system, although the reports are still rare. This chapter focuses on the combination of the signal amplification strategies and nanopore technique in the detection of various analytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams ER, Gomez MA, Scheske L et al (2014) Sensitive diagnosis of cutaneous leishmaniasis by lesion swab sampling coupled to qPCR. Parasitology 141:1891–1897

    Article  CAS  PubMed  Google Scholar 

  • An N, Fleming AM, White HS et al (2012) Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc Natl Acad Sci USA 109(29):11504–11509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arjmandi-Tash H, Belyaeva LA, Schneider GF (2016) Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond. Chem Soc Rev 45:476–493

    Article  CAS  PubMed  Google Scholar 

  • Astier Y, Braha O, Bayley H (2016) Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5’-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J Am Chem Soc 128(5):1705–1710

    Article  CAS  Google Scholar 

  • Ayub M, Stoddart D, Bayley H (2015) Nucleobase recognition by truncated α-hemolysin pores. ACS Nano 9(8):7895–7903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayley H, Cremer PD (2001) Stochastic sensors inspired by biology. Nature 413(6852):226–230

    Article  CAS  PubMed  Google Scholar 

  • Bell NA, Keyser UF (2015) Specific protein detection using designed DNA carriers and nanopores. J Am Chem Soc 137(5):2035–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braha O, Gu LQ, Zhou L et al (2000) Simultaneous stochastic sensing of divalent metal ions. Nat Biotechnol 18(9):1005–1007

    Article  CAS  PubMed  Google Scholar 

  • Braha O, Webb J, Gu LQ et al (2010) Carriers versus adapters in stochastic sensing. Chemphys Chem 6(5):889–892

    Article  CAS  Google Scholar 

  • Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchsbaum SF, Nguyen G, Howorka S et al (2014) DNA-modified polymer pores allow pH- and voltage-gated control of channel flux. J Am Chem Soc 136(28):9902–9905

    Article  CAS  PubMed  Google Scholar 

  • Butler TZ, Pavlenok M, Derrington IM et al (2008) Single-molecule DNA detection with an engineered MspA protein nanopore. Proc Natl Acad Sci USA 105(52):20647–20652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadet J, Wagner JR, Shafirovich V et al (2014) One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. Int J Radiat Biol 90:423–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao C, Long YT (2018) Biological Nanopores: Confined spaces for electrochemical single-molecule analysis. Acc Chem Res 51(2):331–341

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Ying YL, Gu Z et al (2014) Enhanced resolution of low molecular weight poly(ethylene glycol) in nanopore analysis. Anal Chem 86(24):11946–11950

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Ying YL, Hu ZL et al (2016) Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nat Nanotechnol 11:713–718

    Article  CAS  PubMed  Google Scholar 

  • Cheley S, Gu LQ, Bayley H (2002) Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem Biol 9(7):829–838

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Khalid S, Sansom MS et al (2008) Outer membrane protein G: engineering a quiet pore for biosensing. Proc Natl Acad Sci USA 105(17):6272–6277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Si W, Zhang L et al (2013) Chiral selective transmembrane transport of amino acid through artificial channels. J Am Chem Soc 135(6):2152–2155

    Article  CAS  PubMed  Google Scholar 

  • Cherf GM, Lieberman KR, Rashid H et al (2012) Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat Biotechnol 30(4):344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deamer D, Akeson M, Branton D (2016) Three decades of nanopore sequencing. Nat Biotechnol 34(5):518–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degiacomi MT, Iacovache I, Pernot L et al (2013) Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat Chem Biol 9(10):623–629

    Article  CAS  PubMed  Google Scholar 

  • Deng T, Li M, Wang Y et al (2015) Development of solid-state nanopore fabrication technologies. Sci Bull 60(3):304–319

    Article  CAS  Google Scholar 

  • Drndic M (2014) Sequencing with graphene pores. Nat Nanotechnol 9(10):743

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg B (1998) Ionic channels in biological membranes: natural nanotubes. Acc Chem Res 31(3):117–123

    Article  CAS  Google Scholar 

  • Faller M (2004) The structure of a mycobacterial outer-membrane channel. Science 303(5661):1189–1192

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Liu K, Bulushev RD et al (2015) Identification of single nucleotides in MoS2 nanopores. Nat Nanotechnol 10(12):1070–1076

    Article  CAS  PubMed  Google Scholar 

  • Fennouri A, Przybylski C, Pastoriza-Gallego M et al (2012) Single molecule detection of glycosaminoglycan hyaluronic acid oligosaccharides and depolymerization enzyme activity using a protein nanopore. ACS Nano 6(11):9672–9678

    Article  CAS  PubMed  Google Scholar 

  • Fennouri A, Daniel R, Pastoriza-Gallego M et al (2013) Kinetics of enzymatic degradation of high molecular weight polysaccharides through a nanopore: experiments and data-modeling. Anal Chem 85(18):8488–8492

    Article  CAS  PubMed  Google Scholar 

  • Fischbein MD, Drndic M (2008) Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett 93(11):113107

    Article  CAS  Google Scholar 

  • Gao R, Ying YL, Li YJ et al (2018) A 30 nm nanopore electrode: facile fabrication and direct insights into the intrinsic feature of single nanoparticle collisions. Angew Chem Int Ed 57(4):1011–1015

    Article  CAS  Google Scholar 

  • Garaj S, Hubbard W, Reina A et al (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467(7312):190–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gates K (2009) An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 22:1747–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng J, Kim K, Zhang J et al (2014) Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514(7524):612–615

    Article  CAS  PubMed  Google Scholar 

  • Göpfrich K, Li CY, Mames I et al (2016) Ion channels made from a single membrane-spanning DNA duplex. Nano Lett 16(7):4665–4669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu LQ, Braha O, Conlan S et al (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398(6729):686–690

    Article  CAS  PubMed  Google Scholar 

  • Guasch A, Pous J, Ibarra B et al (2002) Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage φ29 connector particle. J Mol Biol 315(4):670–676

    Article  CAS  Google Scholar 

  • Guo W, Hong F, Liu N et al (2015) Target-specific 3D DNA gatekeepers for biomimetic nanopores. Adv Mater 27(12):2090–2095

    Article  CAS  PubMed  Google Scholar 

  • Hall AR, Scott A, Rotem D et al (2010) Hybrid pore formation by directed insertion of alpha hemolysin into solid-state nanopores. Nat Nanotechnol 5(12):874–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque F, Li J, Wu HC et al (2013) Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 8(1):56–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerema SJ, Dekker C (2016) Graphene nanodevices for DNA sequencing. Nat Nanotechnol 11(2):127–136

    Article  CAS  PubMed  Google Scholar 

  • Hiratani M, Ohara M, Kawano R (2017) Amplification and quantification of an antisense oligonucleotide from target microRNA using programmable DNA and a biological nanopore. Anal Chem 89(4):2312–2317

    Article  CAS  PubMed  Google Scholar 

  • Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360–2384

    Article  CAS  PubMed  Google Scholar 

  • Imai K, Tarumoto N, Misawa K et al (2017) A novel diagnostic method for malaria using loop-mediated isothermal amplification (LAMP) and MinION™ nanopore sequencer. BMC Infect Dis 17(1):621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ito T, Sun L, Crooks RM (2003) Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based coulter counter. Ana Chem 75(10):2399–2406

    Article  CAS  Google Scholar 

  • Japrung D, Bahrami A, Nadzeyka A et al (2014) SSB Binding to single-stranded DNA probed using solid-state nanopore sensors. J Phys Chem B 118(40):11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Liu N, Wei G et al (2012) Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic implication logic device. J Am Chem Soc 134(37):15395–15401

    Article  CAS  PubMed  Google Scholar 

  • Kasianowicz JJ, Brandin E, Branton D et al (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93(24):13770–13773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kececi K, Sexton LT, Buyukserin F et al (2008) Resistive-pulse detection of short dsDNAs using a chemically functionalized conical nanopore sensor. Nanomedicine 3(6):787–796

    Article  CAS  PubMed  Google Scholar 

  • Komiya K, Yamamura M (2015) Cascading DNA generation reaction for controlling DNA nanomachines at a physiological temperature. New Generat Comput 33(3):213–229

    Article  Google Scholar 

  • Kong J, Bell NA, Keyser UF (2016) Quantifying nanomolar protein concentrations using designed DNA carriers and solid-state nanopores. Nano Lett 16(6):3557–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kugelman JR, Wiley MR, Mate S et al (2015) Monitoring of ebola virus makona evolution through establishment of advanced genomic capability in liberia. Emerg Infect Dis 21:1135–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kühnemund M, Nilsson M (2014) Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore. Biosens Bioelectron 67:11–17

    Article  PubMed  CAS  Google Scholar 

  • Larkin J, Henley R, Bell DC et al (2013) Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano 7(11):10121–10128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laszlo AH, Derrington IM, Ross BC et al (2014) Decoding long nanopore sequencing reads of natural DNA. Nat Biotechnol 32(8):829–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee W, Park SJ (2014) Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem Rev 114(15):7487–7556

    Article  CAS  PubMed  Google Scholar 

  • Li J, Stein D, McMullan C et al (2001) Ion-beam sculpting at nanometre length scales. Nature 412(6843):166–169

    Article  CAS  PubMed  Google Scholar 

  • Li N, Yu S, Harrell CC et al (2004) Conical nanopore membranes. Preparation and transport properties. Anal Chem 76(7):2025–2030

    Article  CAS  PubMed  Google Scholar 

  • Li W, Bell NAW, Hernández-Ainsa S et al (2013) Single protein molecule detection by glass nanopores. ACS Nano 7(5):4129–4134

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu L, Li Y et al (2015) A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin. Angew Chem Int Ed 54(26):7568–7571

    Article  CAS  Google Scholar 

  • Lindsay S (2016) The promises and challenges of solid-state sequencing. Nat Nanotechnol 11(2):109–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wu HC (2016) DNA-based nanopore sensing. Angew Chem Int Edit 55(49):15216–15222

    Article  CAS  Google Scholar 

  • Liu N, Jiang Y, Zhou Y et al (2013a) Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. Angew Chem Int Edit 125(7):2061–2065

    Article  Google Scholar 

  • Liu L, Yang C, Zhao K et al (2013b) Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat Commun 4(1):2989–2997

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Jiang Y, Zhou Y et al (2013c) Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. Angew Chem Int Edit 52(7):2007–2011

    Article  CAS  Google Scholar 

  • Liu K, Feng J, Kis A et al (2014) Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8(3):2504–2511

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Yang Z, Ou X et al (2016a) Nanopore-based analysis of biochemical species. Microchim Acta 183(3):955–963

    Article  CAS  Google Scholar 

  • Liu N, Hou R, Gao P et al (2016b) Sensitive Zn2+ sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures. Analyst 141(12):3626–3629

    Article  CAS  PubMed  Google Scholar 

  • Long Z, Zhan S, Gao P et al (2018) Recent advances in solid nanopore/channel analysis. Anal Chem 90(1):577–588

    Article  CAS  PubMed  Google Scholar 

  • Lonkar P, Dedon PC (2011) Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int J Cancer 128:1999–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malyshev DA, Seo YJ, Ordoukhanian P et al (2009) PCR with an expanded genetic alphabet. J Am Chem Soc 131:14620–14621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manrao EA, Derrington IM, Laszlo AH et al (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30(4):349–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall MM, Ruzicka J, Zahid OK et al (2015) Nanopore analysis of single-stranded binding protein interactions with DNA. Langmuir 31(15):4582–4588

    Article  CAS  PubMed  Google Scholar 

  • Merchant CA, Healy K, Wanunu M et al (2010) DNA translocation through grapheme nanopores. Nano Lett 10:2915–2921

    Article  CAS  PubMed  Google Scholar 

  • Mohammad MM, Iyer R, Howard KR et al (2012) Engineering a rigid protein tunnel for biomolecular detection. J Am Chem Soc 134(22):9521–9531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movileanu L, Cheley S, Bayley H (2003) Partitioning of individual flexible polymers into a nanoscopic protein pore. Biophys J 85(2):897–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller M, Grauschopf U, Maier T et al (2009) The structure of a cytolytic [agr]-helical toxin pore reveals its assembly mechanism. Nature 459(7247):726–730

    Article  CAS  PubMed  Google Scholar 

  • Noshay A, McGrath JE (2013) Block copolymers: overview and critical survey. Elsevier, New York

    Google Scholar 

  • Parker MW, Buckley JT, Postma JP et al (1994) Structure of the aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367(6460):292–295

    Article  CAS  PubMed  Google Scholar 

  • Pastoriza-Gallego M, Rabah L, Gibrat G et al (2011) Dynamics of unfolded protein transport through an aerolysin pore. J Am Chem Soc 133(9):2923–2931

    Article  CAS  PubMed  Google Scholar 

  • Patel JC, Oberstaller J, Xayavong M et al (2013) Real-time loop-mediated isothermal amplification (RealAmp) for the species-specific identification of Plasmodium vivax. PLoS ONE 8:e54986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payet L, Martinho M, Pastoriza-Gallego M et al (2012) Thermal unfolding of proteins probed at the single molecule level using nanopores. Anal Chem 84(9):4071–4076

    Article  CAS  PubMed  Google Scholar 

  • Pennisi E (2014) DNA sequencers still waiting for the nanopore revolution. Science 343(6173):829–830

    Article  CAS  PubMed  Google Scholar 

  • Perozo E, Cortes DM, Sompornpisut P et al (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418(6901):942–948

    Article  CAS  PubMed  Google Scholar 

  • Plesa C, Verschueren D, Pud S et al (2016) Direct observation of DNA knots using a solid-state nanopore. Nat Nanotechnol 153

    Google Scholar 

  • Quick J, Loman NJ, Duraffour S et al (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature 530:228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radu S, Yi-Tao L, Heinz-Bernhard K et al (2006) Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores. Biochemistry 45(30):9172–9179

    Article  CAS  Google Scholar 

  • Riedl J, Yun D, Fleming AM et al (2015) Identification of DNA lesions using a third base pair for amplification and nanopore sequencing. Nat Commun 6:8807

    Article  CAS  PubMed  Google Scholar 

  • Roberts GS, Kozak D, Anderson W et al (2010) Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6(23):2653–2658

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Quesada J, Ghadiri MR, Bayley H et al (2000) Cyclic peptides as molecular adapters for a pore-forming protein. J Am Chem Soc 122(48):11757–11766

    Article  CAS  Google Scholar 

  • Schmidt J et al (2016) Membrane platforms for biological nanopore sensing and sequencing. Curr Opin Biotechnol 39(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Seo YJ, Hwang GT, Ordoukhanian P et al (2009) Optimization of an unnatural base pair toward natural-like replication. J Am Chem Soc 131:3246–3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang J, Li Z, Liu L et al (2018) Label-free sensing of human 8-oxoguanine DNA glycosylase activity with a nanopore. ACS Sensors 3(2):512–518

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Friedman AK, Baker LA (2017) Nanopore sensing. Anal Chem 89(1):157–188

    Article  CAS  PubMed  Google Scholar 

  • Siwy ZS, Howorka S (2010) Engineered voltage-responsive nanopores. Chem Soc Rev 39(3):1115–1132

    Article  CAS  PubMed  Google Scholar 

  • Song L, Hobaugh MR, Shustak C et al (1996) Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274(5294):1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Soskine M, Biesemans A, De Maeyer M et al (2013) Tuning the size and properties of ClyA nanopores assisted by directed evolution. J Am Chem Soc 135(36):13456–13463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefureac IR, Kachayev A, Lee SJ et al (2012) Modulation of the translocation of peptides through nanopores by the application of an AC electric field. Chem Commun 48(13):1928–1930

    Article  CAS  Google Scholar 

  • Steinbock LJ, Stober G, Keyser UF (2009) Sensing DNA-coatings of microparticles using micropipettes. Biosens Bioelectron 24(8):2423–2427

    Article  CAS  PubMed  Google Scholar 

  • Steinbock LJ, Otto O, Chimerel C et al (2010) Detecting DNA folding with nanocapillaries. Nano Lett 10(7):2493–2497

    Article  CAS  PubMed  Google Scholar 

  • Stoloff DH, Wanunu M (2013) Recent trends in nanopores for biotechnology. Curr Opin Biotechnol 24(4):699–704

    Article  CAS  PubMed  Google Scholar 

  • Storm A, Chen J, Ling X et al (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2(8):537–540

    Article  CAS  PubMed  Google Scholar 

  • Subbarao GV, Berg BVD (2006) Crystal structure of the monomeric porin OmpG. J Mol Biol 360(4):750–759

    Article  CAS  PubMed  Google Scholar 

  • Sze J, Ivanov AP, Cass A et al (2017) Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nat Commun 8(1):1552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsitrin Y, Morton CJ, Elbez C et al (2002) Conversion of a transmembrane to a water-soluble protein complex by a single point mutation. Nat Struct Biol 9(10):729–733

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan BMK (2011) Solid-state nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6(10):615–624

    Article  CAS  PubMed  Google Scholar 

  • Vogel R, Anderson W, Eldridge J et al (2012) A variable pressure method for characterizing nanoparticle surface charge using pore sensors. Anal Chem 84(7):3125–3131

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Gu Z, Cao C et al (2013) Analysis of a single α-synuclein fibrillation by the interaction with a protein nanopore. Anal Chem 85(17):8254–8261

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Fu Q, Wang X et al (2015) Atomic layer deposition modified track-etched conical nanochannels for protein sensing. Anal Chem 87(16):8227–8233

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Sun Y, Zhang F (2017) Temperature-sensitive artificial channels through pillar[5]arene-based host-guest interactions. Angew Chem Int Ed 56(19):5294–5298

    Article  CAS  Google Scholar 

  • Wanunu M, Sutin J, Meller A (2009) DNA profiling using solid-state nanopores: detection of DNA-binding molecules. Nano Lett 9(10):3498–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanunu M, Dadosh T, Ray V et al (2010) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5(11):807–814

    Article  CAS  PubMed  Google Scholar 

  • Wen S, Zeng T, Liu L et al (2011) Highly sensitive and selective DNA-based detection of mercury (II) with α-hemolysin nanopore. J Am Chem Soc 133(45):18312–18317

    Article  CAS  PubMed  Google Scholar 

  • Wendell D, Jing P, Geng J et al (2009) Translocation of double stranded DNA through membrane adapted phi29 motor protein nanopore. Nat Biotechnol 4(11):765–772

    CAS  Google Scholar 

  • Wu HC, Bayley H (2008) Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. J Am Chem Soc 130(21):6813–6819

    Article  CAS  PubMed  Google Scholar 

  • Xi D, Shang J, Fan E et al (2016) Nanopore-based selective discrimination of microRNAs with single-nucleotide difference using locked nucleic acid-modified probes. Anal Chem 88(21):10540–10546

    Article  CAS  PubMed  Google Scholar 

  • Xi D, Li Z, Liu L et al (2018) Ultrasensitive detection of cancer cells combining enzymatic signal amplification with an aerolysin nanopore. Anal Chem 90:1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Ying YL, Zhang J, Gao R et al (2013) Nanopore-based sequencing and detection of nucleic acids. Angew Chem Int Ed 52(50):13154–13161

    Article  CAS  Google Scholar 

  • Ying YL, Li YJ, Mei J et al (2018a) Manipulating and visualizing the dynamic aggregation-induced emission within a confined quartz nanopore. Nat Commun 9(1):3657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ying YL, Hu YX, Gao R et al (2018b) Asymmetric nanopore electrode-based amplification for electron transfer imaging in live cells. J Am Chem Soc 140(16):5385–5392

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, He F, Sun D et al (2004) A simple method for preparation of through-hole porous anodic alumina membrane. Chem Mater 6(10):1841–1844

    Article  CAS  Google Scholar 

  • Zahid OK, Wang F, Ruzicka JA et al (2016) Sequence-specific recognition of microRNAs and other short nucleic acids with solid-state nanopores. Nano Lett 16:2033–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Chen F, Xu F et al (2014) Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid microRNA detection at attomolar level. Anal Chem 86(16):8098–8105

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Tian Y, Jiang L (2016) Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels. Nano Today 11(1):61–81

    Article  CAS  Google Scholar 

  • Zhang H, Hiratani M, Nagaoka K et al (2017a) MicroRNA detection at femtomolar concentrations with isothermal amplification and a biological nanopore. Nanoscale 9(42):16124–16128

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Sui X, Li P et al (2017b) Ultrathin and ion-selective janus membranes for high-performance osmotic energy conversion. J Am Chem Soc 139(26):8905–8914

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Zhang HS, Tang H et al (2017) Nanopore biosensor for sensitive and label-free nucleic acid detection based on hybridization chain reaction amplification. Talanta 175:121–126

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Wang L, Chen X et al (2016) Label-free nanopore single-molecule measurement of trypsin activity. ACS Sens 1(5):607–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongmei Xi or Min Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xi, D., Liu, M. (2019). Nucleic Acid Amplification Strategy-Based Nanopore Sensors. In: Zhang, S., Bi, S., Song, X. (eds) Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-7044-1_9

Download citation

Publish with us

Policies and ethics