Skip to main content

Nucleic Acid Amplification Strategies in Surface Plasmon Resonance Technologies

  • Chapter
  • First Online:
Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine
  • 725 Accesses

Abstract

Surface plasmon resonance (SPR) is a real-time and label-free technology for molecular interactions, chemical detection, and immunoassays. In this chapter, the application of nucleic acid amplification strategies, such as PCR , HCR , RCA , and SDA , in SPR technologies was summarized, providing an insight into the nucleic acid amplification strategies in SPR technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  • Ali MM, Li F, Zhang ZQ et al (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43(10):3324–3341

    Article  CAS  Google Scholar 

  • Bi S, Yue S, Zhang S (2017) Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 46(14):4281–4298

    Article  CAS  Google Scholar 

  • Chen Y, Ming H (2012) Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens 2(1):37–49

    Article  Google Scholar 

  • Ding X, Cheng W, Li Y et al (2017) An enzyme-free surface plasmon resonance biosensing strategy for detection of DNA and small molecule based on nonlinear hybridization chain reaction. Biosens Bioelectron 87:345–351

    Article  CAS  Google Scholar 

  • Fakruddin M, Mannan KSB, Chowdhury A et al (2013) Nucleic acid amplification: alternative methods of polymerase chain reaction. J Pharm Bioallied Sci 5(4):245–252

    Article  Google Scholar 

  • Fong KE, Yung LYL (2013) Localized surface plasmon resonance: A unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale 5(24):12043–12071

    Article  CAS  Google Scholar 

  • Gong L, Zhao ZL, Lv YF et al (2015) DNAzyme-based biosensors and nanodevices. Chem Commun 51(6):979–995

    Article  CAS  Google Scholar 

  • He P, Liu L, Qiao W et al (2014a) Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement. Chem Commun 50(12):1481–1484

    Article  CAS  Google Scholar 

  • He P, Qiao W, Liu L et al (2014b) A highly sensitive surface plasmon resonance sensor for the detection of DNA and cancer cells by a target-triggered multiple signal amplification strategy. Chem Commun 50(73):10718–10721

    Article  CAS  Google Scholar 

  • Hinman SS, McKeating KS, Cheng Q (2018) Surface plasmon resonance: material and interface design for universal accessibility. Anal Chem 90(1):19–39

    Article  CAS  Google Scholar 

  • Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  Google Scholar 

  • Huang L, Reekmans G, Saerens D et al (2005) Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens Bioelectron 21(3):483–490

    Article  CAS  Google Scholar 

  • Kai E, Sawata S, Ikebukuro K et al (1999) Detection of PCR products in solution using surface plasmon resonance. Anal Chem 71(4):796–800

    Article  CAS  Google Scholar 

  • Kretschmann E, Raether H (1968) Notizen: radiative decay of non radiative surface plasmons excited by light. Z Naturforsch, A: Phys Sci 23(12):2135–2136

    Article  CAS  Google Scholar 

  • Li H, Chang J, Hou T et al (2017) HRP-mimicking DNAzyme-catalyzed in situ generation of polyaniline to assist signal amplification for ultrasensitive surface plasmon resonance biosensing. Anal Chem 89(1):673–680

    Article  CAS  Google Scholar 

  • Li X, Wang Y, Wang L et al (2014) A surface plasmon resonance assay coupled with a hybridization chain reaction for amplified detection of DNA and small molecules. Chem Commun 50(39):5049–5052

    Article  CAS  Google Scholar 

  • Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuators 4:299–304

    Article  CAS  Google Scholar 

  • Linman MJ, Abbas A, Cheng Q (2010) Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and spr imaging. Analyst 135(11):2759–2767

    Article  CAS  Google Scholar 

  • Linman MJ, Cheng QJ (2009) Surface plasmon resonance: new biointerface designs and high-throughput affinity screening. In: Zourob M, Lakhtakia A (eds) Optical guided-wave chemical and biosensors i. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 133–153

    Google Scholar 

  • Lou Z, Han H, Zhou M et al (2017) Fabrication of magnetic conjugation clusters via intermolecular assembling for ultrasensitive surface plasmon resonance (SPR) detection in a wide range of concentrations. Anal Chem 89(24):13472–13479

    Article  CAS  Google Scholar 

  • Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  Google Scholar 

  • Nguyen HH, Park J, Kang S et al (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15(5):10481–10510

    Article  CAS  Google Scholar 

  • Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys A: Hadrons Nucl 216(4):398–410

    Article  CAS  Google Scholar 

  • Pelossof G, Tel-Vered R, Liu XQ et al (2011) Amplified surface plasmon resonance based DNA biosensors, aptasensors, and Hg2+ sensors using hemin/G-quadruplexes and Au nanoparticles. Chem Eur J 17(32):8904–8912

    Article  CAS  Google Scholar 

  • Pelossof G, Tel-Vered R, Willner I (2012) Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label. Anal Chem 84(8):3703–3709

    Article  CAS  Google Scholar 

  • Saha K, Agasti SS, Kim C et al (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  Google Scholar 

  • Scarano S, Mascini M, Turner APF et al (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25(5):957–966

    Article  CAS  Google Scholar 

  • Singh P (2016) Spr biosensors: historical perspectives and current challenges. Sens Actuators B Chem 229:110–130

    Article  CAS  Google Scholar 

  • Šípová H, Homola J (2013) Surface plasmon resonance sensing of nucleic acids: A review. Anal Chim Acta 773:9–23

    Article  Google Scholar 

  • Spadavecchia J, Burras A, Lyskawa J et al (2013) Approach for plasmonic based DNA sensing: Amplification of the wavelength shift and simultaneous detection of the plasmon modes of gold nanostructures. Anal Chem 85(6):3288–3296

    Article  CAS  Google Scholar 

  • Springer T, Ermini ML, Spackova B et al (2014) Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters. Anal Chem 86(20):10350–10356

    Article  CAS  Google Scholar 

  • Tudos A J, Schasfoort R B M (2008) Chapter 1 Introduction to surface plasmon resonance. In: Handbook of surface plasmon resonance. The Royal Society of Chemistry, pp 1–14.

    Google Scholar 

  • Walker GT, Fraiser MS, Schram JL et al (1992) Strand displacement amplification—an isothermal, invitro DNA amplification technique. Nucleic Acids Res 20(7):1691–1696

    Article  CAS  Google Scholar 

  • Wijaya E, Lenaerts C, Maricot S et al (2011) Surface plasmon resonance-based biosensors: from the development of different spr structures to novel surface functionalization strategies. Curr Opin Solid State Mater Sci 15(5):208–224

    Article  CAS  Google Scholar 

  • Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  • Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4(21):396–402

    Article  Google Scholar 

  • Xuan F, Hsing IM (2014) Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. J Am Chem Soc 136(28):9810–9813

    Article  CAS  Google Scholar 

  • Yanase Y, Hiragun T, Ishii K et al (2014) Surface plasmon resonance for cell-based clinical diagnosis. Sensors 14(3):4948–4959

    Article  Google Scholar 

  • Yao GH, Liang RP, Yu XD et al (2015) Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques. Anal Chem 87(2):929–936

    Article  CAS  Google Scholar 

  • Zeng K, Li H, Peng Y (2017) Gold nanoparticle enhanced surface plasmon resonance imaging of microrna-155 using a functional nucleic acid-based amplification machine. Microchimica Acta 184(8):2637–2644

    Article  CAS  Google Scholar 

  • Zeng S, Baillargeat D, Ho HP et al (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43(10):3426–3452

    Article  CAS  Google Scholar 

  • Zhang D, Zhang Q, Lu Y et al (2017) Nanoplasmonic biosensor using localized surface plasmon resonance spectroscopy for biochemical detection. In: Rasooly A, Prickril B (eds) Biosensors and biodetection: methods and protocols, vol 1. Optical-based detectors. Springer, New York, New York, NY, pp 89–107

    Chapter  Google Scholar 

  • Zhao WA, Ali MM, Brook MA et al (2008) Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed 47(34):6330–6337

    Article  CAS  Google Scholar 

  • Zhou H, Liu J, Xu JJ et al (2018) Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem Soc Rev 47(6):1996–2019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X. (2019). Nucleic Acid Amplification Strategies in Surface Plasmon Resonance Technologies. In: Zhang, S., Bi, S., Song, X. (eds) Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-7044-1_6

Download citation

Publish with us

Policies and ethics