Skip to main content

Microdroplet Array for Nucleic Acid Amplification Strategies

  • Chapter
  • First Online:
  • 878 Accesses

Abstract

Nucleic acid amplification strategies are often integrated with miniaturized devices including digital microfluidics, microfluidic chips, paper-based fluidic chips, and other open chip without microstructures. In contrast to microdroplet generation on chips with microchannels or on microchambers, recently developed techniques for the generation of droplet arrays (ranging from femtoliter to microliter volumes) on planar substrates have set the stage for the direct manipulation of individual droplets and for image acquisition and quantification. A droplet array on a planar substrate has some advantages over the previous picoliter or nanoliter chambers with solid walls. The integration of nucleic acid amplification into microdroplet array has facilitated the development of nucleic acid-based detection and diagnosis with high assay sensitivity. In this section, we highlight recent progress made on the characterization of open-access microdroplet array, focusing particularly on design, fabrication, and clinical application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arrabito G, Galati C, Castellano S et al (2013) Luminometric sub-nanoliter droplet-to-droplet array (LUMDA) and its application to drug screening by phase I metabolism enzymes. Lab Chip 13:68–72

    Article  CAS  PubMed  Google Scholar 

  • Baner J, Nilsson M, Mendel-Hartvig M et al (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26:5073–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baret JC (2012) Surfactants in droplet-based microfluidics. Lab chip 12:422–433

    Article  CAS  PubMed  Google Scholar 

  • Beer NR, Wheeler EK, Lee-Houghton L et al (2008) On-chip single-copy real-time reverse-transcription PCR in isolated picolater droplets. Anal Chem 80:1854–1858

    Article  CAS  PubMed  Google Scholar 

  • Berthier E, Warrick J, Yu H et al (2008) Managing evaporation for more robust microscale assays Part 1. volume loss in high throughput assays. Lab Chip 8:852–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao A, Zhang CY (2012) Sensitive and label-free DNA methylation detection by ligation-mediated hyperbranched rolling circle amplification. Anal Chem 84:6199–6205

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Lin Z, Zheng Y et al (2012) Development of an automatic multi-channel ink-jet ejection chemiluminescence system and its application to the determination of horseradish peroxidase. Anal Chim Acta 739:77–82

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Mao S, Zeng H et al (2013a) Inkjet nanoinjection for high-thoughput chemiluminescence immunoassay on multicapillary glass plate. Anal Chem 85:7413–7418

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Zhang Y, Nakagawa Y et al (2013b) A piezoelectric drop-on-demand generator for accurate samples in capillary electrophoresis. Talanta 107:111–117

    Article  PubMed  CAS  Google Scholar 

  • Clausell-Tormos J, Lieber D, Baret JC (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15:427–437

    Article  CAS  PubMed  Google Scholar 

  • Dalerba P, Kalisky T, Sahoo D et al (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29:1111–1112

    Article  CAS  Google Scholar 

  • Du WB, Fang Q, Fang ZL (2006) Microfluidic sequential injection analysis in a short capillary. Anal Chem 78:6404–6410

    Article  CAS  PubMed  Google Scholar 

  • Du WB, Sun M, Gu SQ et al (2010) Automated microfluidic screening assay platform based on DropLab. Anal Chem 82:9941–9947

    Article  CAS  PubMed  Google Scholar 

  • Du GS, Pan JZ, Zhao SP et al (2013) Cell-based drug combination screening with a microfluidic droplet array system. Anal Chem 85:6740–6747

    Article  CAS  PubMed  Google Scholar 

  • Du XH, Li WM, Du GS et al (2018) Droplet array-based 3D coculture system for high-throughput tumor angiogenesis assay. Anal Chem 90:3253–3261

    Article  CAS  PubMed  Google Scholar 

  • Efremov AN, Stanganello E, Welle A et al (2013) Micropatterned superhydrophobic structures for the simultaneous culture of multiple cell types and the study of cell-cell communication. Biomaterials 34:1757–1763

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Li L, Ueda E et al (2014) Surface patterning via thiol-yne click chemistry: an extremely fast and versatile approach to superhydrophilic-super-hydrophobic micropatterns. Adv Mater Interfaces 1:1400269

    Article  CAS  Google Scholar 

  • Ferraro P, Coppola S, Grilli S et al (2010) Dispensing nano-pico droplets and liquid patterning by pyro-electrodynamic shooting. Nat Nanotechnol 5:429–435

    Article  CAS  PubMed  Google Scholar 

  • Fodor SP, Read JL, Pirrung MC et al (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Cordero JL, Fan ZH (2017) Sessile droplets for chemical and biological assays. Lab Chip 17:2150–2166

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Estala L, Gaines M et al (2016) Mixed thread/paper-based microfluidic chips as a platform for glucose assays. Electrophoresis 37:1685–1690

    Article  CAS  PubMed  Google Scholar 

  • Gorris HH, Walt DR (2010) Analytical chemistry on the femtoliter scale. Angew Chem Int Ed 49: 3880–3895

    Article  CAS  PubMed  Google Scholar 

  • Gosalia DN, Diamond SL (2003) Printing chemical libraries on microarrays for fluid phase nanoliter reactions. PNAS 100:8721–8726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosalia DN, Salisbury CM, Ellman JA et al (2005) High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays. Mol Cell Proteomics 4:626–636

    Article  CAS  PubMed  Google Scholar 

  • Gu ZZ, Fujishima A, Sato O (2002) Patterning of a colloidal crystal film on a modified hydrophilic and hydrophobic surface. Angew Chem Int Ed 41:2067–2070

    Article  CAS  Google Scholar 

  • Guo XL, Wei Y, Lou Q et al (2018) Manipulating femtoliter to picoliter droplets by pins for single cell analysis and quantitative biological assay. Anal Chem 90:5810–5817

    Article  CAS  PubMed  Google Scholar 

  • Han H, Lee JS, Kim H et al (2018) Single-droplet multiplex bioassay on a robust and stretchable extreme wetting substrate through vacuum-based droplet manipulation. ACS Nano 12:932–941

    Article  CAS  PubMed  Google Scholar 

  • Hatch AC, Fisher JS, Tovar AR et al (2011) 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip 11:3838–3845

    Article  CAS  PubMed  Google Scholar 

  • Heid CA, Stevens J, Livak KJ et al (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Xu P, Luo J et al (2017) Absolute quantification of H5-subtype avian influenza viruses using droplet digital loop-mediated isothermal amplification. Anal Chem 89:745–750

    Article  CAS  PubMed  Google Scholar 

  • Huebner A, Sharma S, Demello AJ et al (2008) Microdroplets: a sea of applications. Lab Chip 8:1244–1254

    Article  CAS  PubMed  Google Scholar 

  • Iino R, Hayama K, Amezawa H et al (2012) A single-cell drug efflux assay in bacteria by using a directly accessible femtoliter droplet array. Lab Chip 12:3923–3929

    Article  CAS  PubMed  Google Scholar 

  • Jin DQ, Zhu Y, Fang Q (2014) Swan Probe: a nanoliter-scale and high-throughput sampling interface for coupling electrospray ionization mass spectrometry with microfluidic droplet array and multiwell plate. Anal Chem 86:10796–10803

    Article  CAS  PubMed  Google Scholar 

  • Jose L, Garcia C, Fan ZH (2017) Sessile droplets for chemical and biological assays. Lab Chip 17:2150–2166

    Article  CAS  PubMed  Google Scholar 

  • Kantlehner M, Kirchner R, Hartmann P et al (2011) Identification of rare DNA variants in mitochondrial disorders with improved array-based sequencing. Nucleic Acids Res 39:44–68

    Article  CAS  Google Scholar 

  • Kim H, Vishniakou S, Faris GW (2009) Petri dish PCR: laser-heated reactions in nanoliter droplet arrays. Lab Chip 9:1230–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Iwai S, Araki S et al (2012) Large-scale femtoliter droplet array for digital counting of single biomolecules. Lab Chip 12:4986–4991

    Article  CAS  PubMed  Google Scholar 

  • Kreutz JE, Munson T, Huynh T et al (2011) Theoretical design and analysis of multivolume digital assays with wide dynamic range validated experimentally with microfluidic digital PCR. Anal Chem 83:8158–8168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuan CM, York RL, Cheng CM (2016) Lignocellulose-based analytical devices: bamboo as an analytical platform for chemical detection. Sci Rep 5:18570–18580

    Article  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  • Li H, Leulmiab RF, Juncker D (2011) Hydrogel droplet microarrays with trapped antibody-functionalized beads for multiplexed protein analysis. Lab Chip 11:528–534

    Article  PubMed  Google Scholar 

  • Li Y, Zeng Y, Ji X et al (2012) Cascade signal amplification for sensitive detection of cancer cell based on self-assembly of DNA scaffold and rolling circle amplification. Sens Actuators B Chem 361–366

    Article  CAS  Google Scholar 

  • Li N, Ma J, Guarnera MA et al (2014) Digital PCR quantification of miRNAs in sputum for diagnosis of lung cancer. J Cancer Res Clin Oncol 140145–140150

    Google Scholar 

  • Li G, Li MZ, Wang ST et al (2015a) Splitting a droplet for femtoliter liquid patterns and single cell isolation. ACS Appl Mater Interfaces 7:9060–9065

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yang Q, Li G et al (2015b) Splitting a droplet for femtoliter liquid patterns and single cell isolation. ACS Appl Mater Interfaces 7:9060–9065

    Article  CAS  PubMed  Google Scholar 

  • Liang YR, Zhu LN, Gao J et al (2017) 3D-printed high-density droplet array chip for miniaturized protein crystallization screening under vapor diffusion mode. ACS Appl Mater Interfaces 9:11837–11845

    Article  CAS  PubMed  Google Scholar 

  • Liao S, He Y, Wang D et al (2016) Dynamic interfacial printing for monodisperse droplets and polymeric microparticles. Adv Mater Technol 1:1600021

    Article  CAS  Google Scholar 

  • Liao SL, Tao XL, Ju YJ et al (2017) Multichannel dynamic interfacial printing: an alternative multicomponent droplet generation technique for lab in a drop. ACS Appl Mater Interfaces 9:43545–43552

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zhu Y, Feng Y et al (2017) Droplet-based multivolume digital polymerase chain reaction by a surface-assisted multifactor fluid segmentation approach. Anal Chem 89:822–829

    Article  CAS  PubMed  Google Scholar 

  • Lizardi PM, Huang X, Zhu Z et al (1998) Mutation detection single molecule counting using isothermal rolling circle amplification. Nat Genet 19:225–232

    Article  CAS  PubMed  Google Scholar 

  • Lo YM, Lun FM, Chan KC et al (2007) Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci USA 104:13116–13121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorber N, Sarrazin F, Guillot P et al (2011) High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Lab Chip 11:779–787

    Article  CAS  PubMed  Google Scholar 

  • Ludlow AT, Robin JD, Sayed M et al (2014) Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Res 42:e104–e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Ma Y, Li H et al (2013) Generation of picoliter droplets of liquid for electrospray ionization with piezoelectric inkjet. J Mass Spectrom 48:321–328

    Article  CAS  PubMed  Google Scholar 

  • Ma XD (2016) Development of hydrophilic-hydrophobic-pattern-based microdroplet array and its application in multiplex nucleic acid detection. Southeast University

    Google Scholar 

  • Ma XD, Xu WW, Chen C et al (2015) A microfabrication-free nanoliter droplet array for nucleic acid detection combined with isothermal amplification. Analyst 140:4370–4373

    Article  CAS  PubMed  Google Scholar 

  • Marques FZ, Prestes PR, Pinheiro LB et al (2014) Measurement of absolute copy number variation reveals association with essential hypertension. BMC Med Genomics 7:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez AW, Phillips ST et al (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM et al (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  CAS  PubMed  Google Scholar 

  • May A, May A, Kirchner R et al (2009) Multiplex RT-PCR expression analysis of developmentally important genesin individual mouse preimplantation embryos and blastomeres. Biol Reprod 80:194–202

    Article  CAS  PubMed  Google Scholar 

  • Mongersun A, Smeenk I, Pratx G et al (2016) Droplet microfluidic platform for the determination of single-cell lactate release. Anal Chem 88:3257–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mugherli L, Burchak ON, Balakireva LA et al (2009) In-situ assembly and screening of enzyme inhibitors with surface tension microarrays. Angew Chem Int Ed 48:7639–7644

    Article  CAS  Google Scholar 

  • Neto AI, Demir K, Popova AA et al (2016a) Fabrication of hydrogel particles of defined shapes using superhydrophobic-hydrophilic micropatterns. Adv Mater 28(35):7613–7619

    Article  CAS  PubMed  Google Scholar 

  • Neto AI, Demir K, Popova AA et al (2016b) Fabrication of hydrogel particles of defined shapes using superhydrophobic-hydrophilic micropatterns. Adv Mater 28:7613–7619

    Article  CAS  PubMed  Google Scholar 

  • Nie MY, Zheng M, Li CM et al (2019) Assembled step emulsification device for multiplex droplet digital polymerase chain reaction. Anal Chem 91:1779–1784

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto S, Sekine H, Zhang X et al (2009) Assembly of self-assembled monolayer-coated Al2O3 on TiO2 thin films for the fabrication of renewable superhydrophobic-superhydrophilic structures. Langmuir 25:7226–7228

    Article  CAS  PubMed  Google Scholar 

  • Oliveira NM, Reis RL, Mano JF (2013) Superhydrophobic surfaces engineered using diatomaceous earth. ACS Appl Mater Interfaces 5:4202–4208

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MB, Neto AI, Correia CR et al (2014) Superhydrophobic chips for cell spheroids high-throughput generation and drug screening. ACS Appl Mater Interfaces 6:9488–9495

    Article  CAS  PubMed  Google Scholar 

  • Park JU, Hardy M, Kang SJ et al (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6:782–789

    Article  CAS  PubMed  Google Scholar 

  • Popova AA, Schillo SM, Demir K et al (2015) Droplet-array (DA) sandwich chip: a versatile platform for high-throughput cell screening based on superhydrophobic-superhydrophilic micropatterning. Adv Mater 27:5217–5222

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Jones RC, Ramakrishnan R (2008) Studying copy number variations using a nanofluidic platform. Nucleic Acids Res 36:e116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rice D, Kocurek B, Snead CA (2010) Chronic disease management for diabetes: baylor health care system’ s coordinated efforts and the opening of the diabetes health and wellness institute. Proc Bayl Univ Med Cent 23:230–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakakihara S, Araki S, Iinoand R et al (2010) A single-molecule enzymatic assay in a directly accessible femtoliter droplet array. Lab Chip 10:3355–3362

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Freire V, Ebert AD, Kalisky T et al (2012) Microfluidic single-cell real-time PCR for comparative analysis of gene expression patterns. Nat Protoc 7:829–838

    Article  CAS  PubMed  Google Scholar 

  • Schmidt U, Lutz-Bonengel S, Weisser HJ et al (2006) Low-volume amplification on chemically structured chips using the PowerPlex16 DNA amplification kit. Int J Legal Med 120:42–48

    Article  PubMed  Google Scholar 

  • Seo J, Lee SK, Lee J et al (2015) Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface. Sci Rep 5:12326–12335

    Google Scholar 

  • Shen F, Sun B, Kreut JE et al (2011) Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational slipchip tested with hiv and hepatitis c viral load. J Am Chem Soc 133:17705–17712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim J, Cristobal G, Link DR et al (2007) Control and measurement of the phase behavior of aqueous solutions using microfluidics. J Am Chem Soc 129:8825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun YN, Zhou XG, Yu YD (2014) A novel picoliter droplet array for parallel real-time polymerase chain reaction based on double-inkjet printing. Lab Chip 14:3603–3610

    Article  CAS  PubMed  Google Scholar 

  • Sun YN, Chen XD, Zhou XG et al (2015) Droplet-in-oil array for picoliter-scale analysis based on sequential-inkjet printing. Lab Chip 15:2429–2436

    Article  CAS  PubMed  Google Scholar 

  • Sun YN, Song WH, Sun XH et al (2018) Inkjet-printing patterned chip on sticky superhydrophobic surface for high-efficiency single-cell array trapping and real-time observation of cellular apoptosis. ACS Appl Mater Interfaces 10:31054–31060

    Article  CAS  PubMed  Google Scholar 

  • Sykes PJ, Neoh SH, Brisco MJ et al (1992) Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13:444–449

    CAS  PubMed  Google Scholar 

  • Takinoue M, Takeuchi S (2011) Droplet microfluidics for the study of artificial cells. Anal Bioanal Chem 400:1705–1716

    Article  CAS  PubMed  Google Scholar 

  • Taly V, Kelly BT, Griffiths AD (2007) Droplets as microreactors for high-throughput biology. ChemBioChem 8:263–272

    Article  CAS  PubMed  Google Scholar 

  • Teh SY, Lin R, Lee AP et al (2008) Droplet microfluidics. Lab Chip 8(2):198–220

    Article  CAS  PubMed  Google Scholar 

  • Theberge AB, Courtois F, Schaerli Y et al (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed 49:5846–5868

    Article  CAS  Google Scholar 

  • Ueda E, Levkin PA (2013) Emerging applications of superhydrophilic-superhydrophobic micropatterns. Adv Mater 25:1234–1247

    Article  CAS  PubMed  Google Scholar 

  • Ueda E, Geyer FL, Nedashkivska V et al (2012) Droplet microarray: facile formation of arrays of microdroplets and hydrogel micropads for cell screening applications. Lab Chip 12:5218

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci USA 96:9236–9241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren L, Bryder D, Weissman IL et al (2006) Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci USA 103:17807–17812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White AK, Heyries KA, Doolin C et al (2013) High-throughput microfluidic single-cell digital polymerase chain reaction. Anal Chem 85:7182–7190

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Zhang C (2015) Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique. Lab Chip 15:1598–1608

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen XL, Gao XH et al (2018a) High-throughput generation of durable droplet arrays for single-cell encapsulation, culture, and monitoring. Anal Chem 90:4303–4309

    Article  CAS  PubMed  Google Scholar 

  • Wu WS, Zhou SF, Hu JM et al (2018) A thermosetting oil for droplet-based real-time monitoring of digital PCR and cell culture. Adv Funct Mater 1803559–1803569

    Article  CAS  Google Scholar 

  • Xu LP, Chen Y, Yang G et al (2015) Ultratrace DNA detection based on the condensing-enrichment effect of superwettable microchips. Adv Mater 27:6878–6884

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Wang X, Ford RM et al (2016a) Self-partitioned droplet array on laser-patterned superhydrophilic glass surface for wall-less cell arrays. Anal Chem 88:2652–2658

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Zheng X, Tao Y et al (2016b) Cross-interface emulsification for generating size-tunable droplets. Anal Chem 88:3171–3177

    Article  CAS  PubMed  Google Scholar 

  • Xu TL, Shi WX, Huang JR et al (2017) Superwettable microchips as a platform toward microgravity biosensing. ACS Nano 11:621–626

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Katagiri D, Mao S et al (2016) Inkjet printing based assembly of thermoresponsive core–shell polymer microcapsules for controlled drug release. Mater Chem B 4:4156–4163

    Article  CAS  Google Scholar 

  • You I, Yun N, Lee H (2013) Surface-tension-confined microfluidics and their applications. ChemPhysChem 14:471–481

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Yang J, Katagiri D et al (2015) Investigation of monodisperse droplet generation in liquids by inkjet. Sens Actuators, B 220:958–961

    Article  CAS  Google Scholar 

  • Zeng H, Katagiri D, Ogino T et al (2016) Droplet enhanced fluorescence for ultrasensitive detection using inkjet. Anal Chem 88:6135–6139

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Jin M, Liu Z et al (2007) Superhydrophobic TiO2 surfaces: preparation, photocatalytic wettability conversion, and superhydrophobic-superhydrophilic patterning. J Phys Chem C 111:14521–14529

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu Y, Yao B et al (2011) Nanolitre droplet array for real time reverse transcription polymerase chain reaction. Lab Chip 11:1545–1549

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhu G, Zhang C (2014) Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification. Anal Chem 86:6703–6709

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chen F, He Z et al (2016a) A novel approach for precisely controlled multiple cell patterning in microfluidic chip by inkjet printing and the detection of drug metabolism and diffusion. Analyst 141:2940–2947

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Mao S, Yang J et al (2016b) The use of an inkjet injection technique in immunoassays by quantitative on-line electrophoretically mediated microanalysis. Chromatogr A 1477:127–131

    Article  CAS  Google Scholar 

  • Zhang W, Li N, Zeng H et al (2017) Inkjet printing based separation of mammalian cells by capillary electrophoresis. Anal Chem 89:8674–8677

    Article  CAS  PubMed  Google Scholar 

  • Zhang WF, Li N, Koga D et al (2018) Inkjet printing based droplet generation for integrated online digital polymerase chain reaction. Anal Chem 90:5329–5334

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Ma XD, Li ML et al (2011) Analysis of CpG island methylation using rolling circle amplification (RCA) product microarry. J Biomed Nanoteclmol 7:292

    Article  CAS  Google Scholar 

  • Zhu Y, Zhang YX, Cai LF et al (2013a) Sequential operation droplet array: an automated microfluidic platform for picoliter-scale liquid handling, analysis and screening. Anal Chem 85:6723–6731

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Xu H, Zheng H et al (2013b) An ultrasensitive aptameric sensor for proteins based on hyperbranched rolling circle amplification. Chem Comm 49:10115–10117

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zhu LN, Guo R et al (2014) Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot. Scientific Report 4:5046

    Article  CAS  Google Scholar 

  • Zhu Y, Zhang YX, Liu WW et al (2015) Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot. Sci Rep 5:9551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu P, Kong T, Zhou C et al (2018) Engineering microstructure with evaporation-induced self-assembly of microdroplets. Small Methods 2:1800017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingnan Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, Y. (2019). Microdroplet Array for Nucleic Acid Amplification Strategies. In: Zhang, S., Bi, S., Song, X. (eds) Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-7044-1_15

Download citation

Publish with us

Policies and ethics