Skip to main content

Surface-Enhanced Raman Spectroscopy for Bioimaging Based on Nucleic Acid Amplification Strategies

  • Chapter
  • First Online:
Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine
  • 752 Accesses

Abstract

Surface-enhanced Raman scattering (SERS) has been widely used on biosensing and bioimaging, especially for nucleic acid analysis. However, some problems such as target identification and signal uniformity limit its development. When introducing nucleic acid amplification strategies into SERS detections, some inspiring works have been reported. Herein, we first made a brief tutorial on SERS technique, then we reviewed recent works on SERS bioimaging based on nucleic acid amplification strategies, and at last, we made an outlook on the development of this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MM, Li F, Zhang ZQ et al (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43(10):3324–3341

    Article  CAS  PubMed  Google Scholar 

  • An Q, Zhang P, Li JM et al (2012) Silver-coated magnetite-carbon core-shell microspheres as substrate-enhanced SERS probes for detection of trace persistent organic pollutants. Nanoscale 4(16):5210–5216

    Article  CAS  PubMed  Google Scholar 

  • Banholzer MJ, Millstone JE, Lidong Q et al (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37(5):885–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bantz KC, Meyer AF, Wittenberg NJ et al (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13(24):11551–11567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barhoumi A, Zhang D, Tam F et al (2008) Surface-enhanced Raman spectroscopy of DNA. J Am Chem Soc 130(16):5523–5529

    Article  CAS  PubMed  Google Scholar 

  • Betz JF, Yu WW, Cheng Y et al (2014) Simple SERS substrates: powerful, portable, and full of potential. Phys Chem Chem Phys 16(6):2224–2239

    Article  CAS  PubMed  Google Scholar 

  • Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241–250

    Article  CAS  Google Scholar 

  • Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540

    Article  CAS  PubMed  Google Scholar 

  • Cardinal MF, Ende EV, Hackler RA et al (2017) Expanding applications of SERS through versatile nanomaterials engineering. Chem Soc Rev 46(13):3886–3903

    Article  CAS  PubMed  Google Scholar 

  • Chen JW, Liu XP, Feng KJ, Liang Y, Jiang JH, Shen GL, Yu RQ (2008) Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer. Biosens Bioelectron 24(1):66–71

    Article  CAS  PubMed  Google Scholar 

  • Chen LX, Qi N, Wang XK et al (2014) Ultrasensitive surface-enhanced Raman scattering nanosensor for mercury ion detection based on functionalized silver nanoparticles. RSC Adv 4(29):15055–15060

    Article  CAS  Google Scholar 

  • Cialla-May D, Zheng XS, Weber K et al (2017) Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 46(13):3945–3961

    Article  CAS  PubMed  Google Scholar 

  • Dasary SSR, Singh AK, Senapati D et al (2009) Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J Am Chem Soc 131(38):13806–13812

    Article  CAS  PubMed  Google Scholar 

  • Ding SY, You EM, Tian ZQ et al (2017) Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 46(13):4042–4076

    Article  CAS  PubMed  Google Scholar 

  • dos Santos DP, Andrade GFS, Brolo AG et al (2011) Fluctuations of the Stokes and anti-Stokes surface-enhanced resonance Raman scattering intensities in an electrochemical environment. Chem Commun 47(25):7158–7160

    Article  CAS  Google Scholar 

  • Du S, Yu C, Tang L et al (2018) Applications of SERS in the detection of stress-related substances. Nanomaterials 8(10):757

    Article  PubMed Central  CAS  Google Scholar 

  • Fu CC, Xu WQ, Wang HL et al (2014) DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced raman scattering detection of Lead ions via a particle-on-a-film hot spot construction. Anal Chem 86(23):11494–11497

    Article  CAS  PubMed  Google Scholar 

  • Gao FL, Du LL, Tang DQ et al (2015) A cascade signal amplification strategy for surface enhanced Raman spectroscopy detection of thrombin based on DNAzyme assistant DNA recycling and rolling circle amplification. Biosens Bioelectron 66:423–430

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rico E, Alvarez-Puebla RA, Guerrini L (2018) Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications. Chem Soc Rev 47(13):4909–4923

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Zhao ZL, Lv YF et al (2015) DNAzyme-based biosensors and nanodevices. Chem Commun 51(6):979–995

    Article  CAS  Google Scholar 

  • Guerrini L, Graham D (2012) Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem Soc Rev 41(21):7085–7107

    Article  CAS  PubMed  Google Scholar 

  • Guven B, Boyaci IH, Tamer U et al (2015) Development of rolling circle amplification based surface-enhanced Raman spectroscopy method for 35S promoter gene detection. Talanta 136:68–74

    Article  CAS  PubMed  Google Scholar 

  • Haldavnekar R, Venkatakrishnan K, Tan B (2018) Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection. Nat Commun 9:18

    Article  CAS  Google Scholar 

  • Harmsen S, Bedics MA, Wall MA et al (2015) Rational design of a chalcogenopyrylium-based surface-enhanced resonance Raman scattering nanoprobe with attomolar sensitivity. Nat Commun 6:9

    Article  CAS  Google Scholar 

  • He P, Zhang Y, Liu LJ et al (2013) Ultrasensitive SERS detection of lysozyme by a target-triggering multiple cycle amplification strategy based on a gold substrate. Chem-Eur J 19(23):7452–7460

    Article  CAS  PubMed  Google Scholar 

  • He Y, Yang X, Yuan R et al (2017) “Off” to “On” Surface-enhanced Raman spectroscopy platform with padlock probe-based exponential rolling circle amplification for ultrasensitive detection of microRNA 155. Anal Chem 89(5):2866–2872

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Zheng PC, Jiang JH, Shen GL, Yu RQ, Liu GK (2009) Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy. Anal Chem 81(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Tanabe M, Sato J et al (2014) Effects of atomic geometry and electronic structure of platinum surfaces on molecular adsorbates studied by gap-mode SERS. J Am Chem Soc 136(29):10299–10307

    Article  CAS  PubMed  Google Scholar 

  • Hu JA, Zhang CY (2010) Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced raman scattering spectroscopy. Anal Chem 82(21):8991–8997

    Article  CAS  PubMed  Google Scholar 

  • Hu SW, Qiao S, Pan JB et al (2018) A paper-based SERS test strip for quantitative detection of Mucin-1 in whole blood. Talanta 179:9–14

    Article  CAS  PubMed  Google Scholar 

  • Hu SW, Qiao S, Xu BY et al (2017) Dual-functional carbon dots pattern on paper chips for Fe3+ and Ferritin analysis in whole blood. Anal Chem 89(3):2131–2137

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Lee SY, Seo TS (2018) In vivo synthesis of nanocomposites using the recombinant escherichia coli. Small 14(42):7

    Article  CAS  Google Scholar 

  • Kahraman M, Mullen ER, Korkmaz A et al (2017) Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics 6(5):831–852

    Article  CAS  Google Scholar 

  • Kang T, Yoo SM, Yoon I et al (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10(4):1189–1193

    Article  CAS  PubMed  Google Scholar 

  • Kneipp J, Kneipp H, Kneipp K (2008) SERS-a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37(5):1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Kneipp K, Kneipp H, Itzkan I et al (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99(10):2957

    Article  CAS  PubMed  Google Scholar 

  • Krafft C, Schmitt M, Schie IW et al (2017) Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches. Angew Chem Int Ed 56(16):4392–4430

    Article  CAS  Google Scholar 

  • Laing S, Gracie K, Faulds K (2016) Multiplex in vitro detection using SERS. Chem Soc Rev 45(7):1901–1918

    Article  CAS  PubMed  Google Scholar 

  • Laing S, Jamieson LE, Faulds K et al (2017) Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat Rev Chem 1(8):19

    Article  CAS  Google Scholar 

  • Lane LA, Qian XM, Nie SM (2015) SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev 115(19):10489–10529

    Article  CAS  PubMed  Google Scholar 

  • Lee CW, Tseng FG (2018) Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis. Biomicrofluidics 12(1):19

    Article  CAS  Google Scholar 

  • Lee JM, Hwang A, Choi H et al (2017) A multivalent structure-specific RNA binder with extremely stable target binding but reduced interaction with nonspecific RNAs. Angew Chem Int Ed 56(50):15998–16002

    Article  CAS  Google Scholar 

  • Li M, Cushing SK, Liang HY et al (2013) Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of Hepatitis B Virus DNA. Anal Chem 85(4):2072–2078

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Wang LL, Li CX (2015a) Rolling-circle amplification detection of thrombin using surface-enhanced Raman spectroscopy with core-shell nanoparticle probe. Chem Eur J 21(18):6817–6822

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Zheng FW, Ren R (2015b) Detecting miRNA by producing RNA: a sensitive assay that combines rolling-circle DNA polymerization and rolling circle transcription. Chem Commun 51(60):11976–11979

    Article  CAS  Google Scholar 

  • Li Y, Qi XD, Lei CC et al (2014) Simultaneous SERS detection and imaging of two biomarkers on the cancer cell surface by self-assembly of branched DNA-gold nanoaggregates. Chem Commun 50(69):9907–9909

    Article  CAS  Google Scholar 

  • Li Y, Yu CF, Han HX et al (2016) Sensitive SERS detection of DNA methyltransferase by target triggering primer generation-based multiple signal amplification strategy. Biosens Bioelectron 81:111–116

    Article  CAS  PubMed  Google Scholar 

  • Lim DK, Jeon KS, Hwang JH et al (2011) Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol 6(7):452–460

    Article  CAS  PubMed  Google Scholar 

  • Maiti KK, Dinish US, Samanta A et al (2012) Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7(2):85–93

    Article  CAS  Google Scholar 

  • Maiti KK, Samanta A, Vendrell M et al (2011) Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters. Chem Commun 47(12):3514–3516

    Article  CAS  Google Scholar 

  • Masetti M, Xie HN, Krpetic Z et al (2015) Revealing DNA Interactions with Exogenous Agents by Surface-Enhanced Raman Scattering. J Am Chem Soc 137(1):469–476

    Article  CAS  PubMed  Google Scholar 

  • Meng XY, Wang HY, Chen N et al (2018) A Graphene-silver nanoparticle-silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of Bacteria. Anal Chem 90(9):5646–5653

    Article  CAS  PubMed  Google Scholar 

  • Morla-Folch J, Gisbert-Quilis P, Masetti M, Garcia-Rico E, Alvarez-Puebla RA, Guerrini L (2017) Conformational SERS classification of K-Ras point mutations for cancer diagnostics. Angew Chem-Int Edit 56(9):2381–2385

    Article  CAS  Google Scholar 

  • Morla-Folch J, Xie HN, Gisbert-Quilis P et al (2015) Ultrasensitive direct quantification of nucleobase modifications in DNA by surface-enhanced raman scattering: The Case of Cytosine. Angew Chem Int Ed 54(46):13650–13654

    Article  CAS  Google Scholar 

  • Ngo HT, Wang HN, Fales AM et al (2016) Plasmonic SERS biosensing nanochips for DNA detection. Anal Bioanal Chem 408(7):1773–1781

    Article  CAS  PubMed  Google Scholar 

  • Pang YF, Wang JF, Xiao R et al (2014) SERS molecular sentinel for the RNA genetic marker of PB1-F2 protein in highly pathogenic avian influenza (HPAI) virus. Biosens Bioelectron 61:460–465

    Article  CAS  PubMed  Google Scholar 

  • Panikkanvalappil SR, Mahmoud MA, Mackey MA et al (2013) Surface-enhanced Raman spectroscopy for real-time monitoring of reactive oxygen species-induced DNA damage and its prevention by platinum nanoparticles. ACS Nano 7(9):7524–7533

    Article  CAS  PubMed  Google Scholar 

  • Park JE, Lee Y, Nam JM (2018) Precisely shaped, uniformly formed gold nanocubes with ultrahigh reproducibility in single-particle scattering and surface enhanced Raman scattering. Nano Lett 18(10):6475–6482

    Article  CAS  PubMed  Google Scholar 

  • Prado E, Colin A, Servant L et al (2014) SERS spectra of oligonucleotides as fingerprints to detect label-free RNA in microfluidic devices. J Phys Chem C 118(25):13965–13971

    Article  CAS  Google Scholar 

  • Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920

    Article  CAS  PubMed  Google Scholar 

  • Schlucker S (2014) Surface-enhanced raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53(19):4756–4795

    Article  CAS  Google Scholar 

  • Shi Y, Chen N, Su YY et al (2018) Silicon nanohybrid-based SERS chips armed with an internal standard for broad-range, sensitive and reproducible simultaneous quantification of lead(II) and mercury(II) in real systems. Nanoscale 10(8):4010–4018

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Wang HY, Jiang XX et al (2016) Ultrasensitive, specific, recyclable, and reproducible detection of Lead ions in real systems through a polyadenine-assisted, surface enhanced raman scattering silicon chip. Anal Chem 88(7):3723–3729

    Article  CAS  PubMed  Google Scholar 

  • Si YM, Bai YC, Qin XJ et al (2018) Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced raman scattering imaging assay of endonuclease activity in live cells. Anal Chem 90(6):3898–3905

    Article  CAS  PubMed  Google Scholar 

  • Tao GQ, Wang J (2018) Gold nanorod@nanoparticle seed-SERS nanotags/graphene oxide plasmonic superstructured nanocomposities as an “on-off” SERS aptasensor. Carbon 133:209–217

    Article  CAS  Google Scholar 

  • Tian AH, Liu Y, Gao JA (2017) Sensitive SERS detection of lead ions via DNAzyme based quadratic signal amplification. Talanta 171:185–189

    Article  CAS  PubMed  Google Scholar 

  • Wang GQ, Wang YQ, Chen LX et al (2010) Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron 25(8):1859–1868

    Article  CAS  PubMed  Google Scholar 

  • Wang HN, Dhawan A, Du Y et al (2013a) Molecular sentinel-on-chip for SERS-based biosensing. Phys Chem Chem Phys 15(16):6008–6015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YQ, Yan B, Chen LX (2013b) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Zhou YF, Jiang XX et al (2015) Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced raman scattering multifunctional chip. Angew Chem Int Ed 54(17):5132–5136

    Article  CAS  Google Scholar 

  • Wang XM, Zhang Z, Liu J et al (2017a) Stable Cu2O@Au for accurate and rapid surface enhancement Raman scattering analysis of rhodamine B. Chin J Anal Chem 45(12):2026–2031

    Google Scholar 

  • Wang ZY, Zong SF, Wu L et al (2017b) SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem Rev 117(12):7910–7963

    Article  CAS  PubMed  Google Scholar 

  • Wang LL, Wen YL, Li LY et al (2018a) Sensitive and label-free electrochemical lead ion biosensor based on a DNAzyme triggered G-quadruplex/hemin conformation. Biosens Bioelectron 115:91–96

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ruan QY, Lei ZC et al (2018b) Highly sensitive and automated surface enhanced raman scattering-based immunoassay for H5N1 detection with digital microfluidics. Anal Chem 90(8):5224–5231

    Article  CAS  PubMed  Google Scholar 

  • Xu LG, Gao YF, Kuang H et al (2018) MicroRNA-directed intracellular self-assembly of chiral nanorod dimers. Angew Chem Int Ed 57(33):10544–10548

    Article  CAS  Google Scholar 

  • Yao L, Ye YW, Teng J et al (2017) In vitro isothermal nucleic acid amplification assisted surface-enhanced Raman spectroscopic for ultrasensitive detection of vibrio parahaemolyticus. Anal Chem 89(18):9775–9780

    Article  CAS  PubMed  Google Scholar 

  • Ye LP, Hu J, Liang L et al (2014a) Surface-enhanced Raman spectroscopy for simultaneous sensitive detection of multiple microRNAs in lung cancer cells. Chem Commun 50(80):11883–11886

    Article  CAS  Google Scholar 

  • Ye SJ, Mao YN, Guo YY et al (2014b) Enzyme-based signal amplification of surface-enhanced Raman scattering in cancer-biomarker detection. Trac-Trends Anal Chem 55:43–54

    Article  CAS  Google Scholar 

  • Yoon J, Jang HJ, Jung I et al (2017) A close-packed 3D plasmonic superlattice of truncated octahedral gold nanoframes. Nanoscale 9(23):7708–7713

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Liu YY, Wei JJ (2016) Recent advances in surface-enhanced raman spectroscopy (SERS): finite-difference time-domain (FDTD) method for SERS and sensing applications. Trac-Trends Anal Chem 75:162–173

    Article  CAS  Google Scholar 

  • Zhang JW, Winget SA, Wu YR et al (2016) Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy. ACS Nano 10(2):2607–2616

    Article  CAS  PubMed  Google Scholar 

  • Zhang RY, Lv SP, Gong Y et al (2018) Sensitive determination of Hg(II) based on a hybridization chain recycling amplification reaction and surface-enhanced Raman scattering on gold nanoparticles. Microchim Acta 185(8):8

    Google Scholar 

  • Zhao XH, Deng M, Rao GF et al (2018) High-performance SERS substrate based on hierarchical 3D Cu nanocrystals with efficient morphology control. Small 14(38):8

    Article  CAS  Google Scholar 

  • Zhou H, Liu J, Xu JJ et al (2018) Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem Soc Rev 47(6):1996–2019

    Article  CAS  PubMed  Google Scholar 

  • Zou YX, Huang SQ, Liao YX et al (2018) Isotopic graphene-isolated-Au-nanocrystals with cellular Raman-silent signals for cancer cell pattern recognition. Chem Sci 9(10):2842–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanwen Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, S. (2019). Surface-Enhanced Raman Spectroscopy for Bioimaging Based on Nucleic Acid Amplification Strategies. In: Zhang, S., Bi, S., Song, X. (eds) Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-7044-1_12

Download citation

Publish with us

Policies and ethics