Skip to main content

Nucleic Acid Amplification Strategy-Based Fluorescence Imaging

  • Chapter
  • First Online:
Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine
  • 811 Accesses

Abstract

Nucleic acid amplification techniques can be grouped into two major categories, including isothermal amplification and thermocycling amplification. Isothermal amplification techniques include rolling-circle amplification (RCA), strand-displacement amplification (SDA), helicase-dependent amplification (HDA), and hybridization chain reaction (HCR). And polymerase chain reaction (PCR) and ligase chain reaction (LCR) have been known as thermocycling amplification techniques. Now nucleic acid amplification techniques were widely applied in cellular imaging based on fluorescent techniques. In this section, we attempt to summarize recent development of nucleic acid amplification techniques for bio-analysis, including the detection of miRNA, mRNA, ATP, telomerase, pH, and metal ions in cells and biomolecules in cell surface. We also consider the current challenges and our perspectives of nucleic acid amplification techniques for bio-imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam KK, Tawiah KD, Lichte MF et al (2017) A fluorescent split aptamer for visualizing RNA-RNA assembly in vivo. ACS Synth Biol 6:1710–1721

    Article  CAS  Google Scholar 

  • Bai S, Xu B, Guo Y et al (2018) High-discrimination factor nanosensor based on tetrahedral DNA nanostructures and gold nanoparticles for detection of miRNA-21 in live cells. Theranostics 8:2424–2434

    Article  CAS  Google Scholar 

  • Burke KS, Antilla KA, Tirrell DA (2017) A fluorescence in situ hybridization method to quantify mRNA translation by visualizing ribosome-mRNA interactions in single cells. ACS Cent Sci 3:425–433

    Article  CAS  Google Scholar 

  • Dai W, Dong H, Guo K et al (2018) Near-infrared triggered strand displacement amplification for microRNA quantitative detection in single living cells. Chem Sci 9:1753–1759

    Article  CAS  Google Scholar 

  • Deng R, Zhang K, Sun Y et al (2017) Highly specific imaging of mRNA in single cells by target RNA-initiated rolling circle amplification. Chem Sci 8:3668–3675

    Article  CAS  Google Scholar 

  • Ding C, Zhang C, Yin X et al (2018) Near-infrared fluorescent Ag2S nanodot-based signal amplification for efficient detection of circulating tumor cells. Anal Chem 90:6702–6709

    Article  CAS  Google Scholar 

  • Esteban-Fernandez de Avila B, Angell C, Soto F et al (2016) Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10:4997–5005

    Article  CAS  Google Scholar 

  • Fan HH, Zhao ZL, Yan GB et al (2015) A smart dnazyme–MnO2 nanosystem for efficient gene silencing. Angew Chem Int Ed 127:4883–4887

    Article  Google Scholar 

  • Gao F, Wu J, Yao Y et al (2018) Proximity hybridization triggered strand displacement and DNAzyme assisted strand recycling for ATP fluorescence detection in vitro and imaging in living cells. RSC Adv 8:28161–28171

    Article  CAS  Google Scholar 

  • He L, Lu D, Liang H et al (2018) mRNA-initiated, three-dimensional DNA amplifier able to function inside living cells. J Am Chem Soc 140:258–263

    Article  CAS  Google Scholar 

  • Huang J, Wang H, Yang X et al (2016) Fluorescence resonance energy transfer-based hybridization chain reaction for in situ visualization of tumor-related mRNA. Chem Sci 7:3829–3835

    Article  CAS  Google Scholar 

  • Huang DJ, Huang ZM, Xiao HY et al (2018a) Protein scaffolded DNA tetrads enable efficient delivery and ultrasensitive imaging of miRNA through crosslinking hybridization chain reaction. Chem Sci 9:4892–4897

    Article  CAS  Google Scholar 

  • Huang DJ, Wu Z, Yu RQ et al (2018b) Small molecule-linked programmable DNA for washing-free imaging of cell surface biomarkers. Talanta 190:429–435

    Article  CAS  Google Scholar 

  • Karunanayake Mudiyanselage A, Yu Q, Leon-Duque MA et al (2018) Genetically encoded catalytic hairpin assembly for sensitive RNA imaging in live cells. J Am Chem Soc 140:8739–8745

    Article  CAS  Google Scholar 

  • Larsson C, Grundberg I, Soderberg O et al (2010) In situ detection and genotyping of individual mRNA molecules. Nat Methods 7:395–397

    Article  CAS  Google Scholar 

  • Li N, Chang C, Pan W et al (2012) A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew Chem Int Ed 51:7426–7430

    Article  CAS  Google Scholar 

  • Li F, Zhang H, Wang Z et al (2013) Dynamic DNA assemblies mediated by binding-induced DNA strand displacement. J Am Chem Soc 135:2443–2446

    Article  CAS  Google Scholar 

  • Li L, Feng J, Liu H et al (2016a) Two-color imaging of microRNA with enzyme-free signal amplification via hybridization chain reactions in living cells. Chem Sci 7:1940–1945

    Article  CAS  Google Scholar 

  • Li Z, He X, Luo X et al (2016b) DNA-programmed quantum dot polymerization for ultrasensitive molecular imaging of cancer cells. Anal Chem 88:9355–9358

    Article  CAS  Google Scholar 

  • Li D, Zhou W, Yuan R et al (2017a) A DNA-fueled and catalytic molecule machine lights up trace under-expressed microRNAs in living cells. Anal Chem 89:9934–9940

    Article  CAS  Google Scholar 

  • Li J, Li D, Yuan R et al (2017b) Biodegradable MnO2 nanosheet-mediated signal amplification in living cells enables sensitive detection of down-regulated intracellular microRNA. ACS Appl Mater Interfaces 9:5717–5724

    Article  CAS  Google Scholar 

  • Li JJ, Li WN, Du WF et al (2018a) Target induced reconstruction of DNAzymatic amplifier nanomachines in living cells for concurrent imaging and gene silencing. Chem Commun 54:10626–10629

    Article  CAS  Google Scholar 

  • Li Z, Wang G, Shen Y et al (2018b) DNA-templated magnetic nanoparticle-quantum dot polymers for ultrasensitive capture and detection of circulating tumor cells. Adv Funct Mater 28:1707152

    Article  Google Scholar 

  • Liang CP, Ma PQ, Liu H et al (2017) Rational engineering of a dynamic, entropy-driven DNA nanomachine for intracellular microRNA imaging. Angew Chem Int Ed Engl 56:9077–9081

    Article  CAS  Google Scholar 

  • Liao X, Li L, Pan J et al (2018) In situ biosensor for detection miRNA in living cells based on carbon nitride nanosheets with catalytic hairpin assembly amplification. Luminescence 33:190–195

    Article  Google Scholar 

  • Liu HY, Tian T, Ji DD et al (2016) A Graphene-enhanced imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells. Biosens Bioelectron 85:909–914

    Article  CAS  Google Scholar 

  • Liu L, Liu JW, Huang ZM et al (2017) Proton-fueled, reversible DNA hybridization chain assembly for pH sensing and imaging. Anal Chem 89:6944–6947

    Article  CAS  Google Scholar 

  • Liu J, Du P, Zhang J et al (2018a) Sensitive detection of intracellular microRNA based on a flowerlike vector with catalytic hairpin assembly. Chem Commun 54:2550–2553

    Article  CAS  Google Scholar 

  • Liu L, Liu JW, Wu H et al (2018b) Branched hybridization chain reaction circuit for ultrasensitive localizable imaging of mRNA in living cells. Anal Chem 90:1502–1505

    Article  CAS  Google Scholar 

  • Mei SH, Liu ZJ, Brennan JD et al (2003) An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J Am Chem Soc 125:412–420

    Article  CAS  Google Scholar 

  • Meng X, Dai W, Zhang K et al (2018) Imaging multiple microRNAs in living cells using ATP self-powered strand-displacement cascade amplification. Chem Sci 9:1184–1190

    Article  CAS  Google Scholar 

  • Ou M, Huang J, Yang XH et al (2017) Live-cell microRNA imaging through MnO2 nanosheet mediated DD-A hybridization chain reaction. Chem Biochem Commun 19:147–152

    Google Scholar 

  • Paliwoda RE, Li F, Reid S et al (2014) Sequential strand displacement beacon for detection of DNA coverage on functionalized gold nanoparticles. Anal Chem 86:6138–6143

    Article  CAS  Google Scholar 

  • Pan W, Zhang T, Yang H et al (2013) Multiplexed detection and imaging of intracellular mRNAs using a four-color nanoprobe. Anal Chem 85:10581–10588

    Article  CAS  Google Scholar 

  • Santangelo PJ, Nix B, Tsourkas A et al (2004) Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 32:e57

    Article  Google Scholar 

  • Santangelo DS, Giljohann DA, Hill HD et al (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129:15477–15479

    Article  Google Scholar 

  • Shen Y, Li Z, Wang G et al (2018) Photocaged nanoparticle sensor for sensitive microRNA imaging in living cancer cells with temporal control. ACS Sens 3:494–503

    Article  CAS  Google Scholar 

  • Song WJ (2017) Intracellular DNA and microRNA sensing based on metal-organic framework nanosheets with enzyme-free signal amplification. Talanta 170:74–80

    Article  CAS  Google Scholar 

  • Song P, Ye D, Zuo X et al (2017) DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis. Nano Lett 17:5193–5198

    Article  CAS  Google Scholar 

  • Su FX, Yang CX, Yan XP (2017) Intracellular messenger RNA triggered catalytic hairpin assembly for fluorescence imaging guided photothermal therapy. Anal Chem 89:7277–7281

    Article  CAS  Google Scholar 

  • Tang Y, Zhang XL, Tang LJ et al (2017) In situ imaging of individual mRNA mutation in single cells using ligation-mediated branched hybridization chain reaction (ligation-bHCR). Anal Chem 89:3445–3451

    Article  CAS  Google Scholar 

  • Wang YM, Wu Z, Liu SJ et al (2015) Structure-switching aptamer triggering hybridization chain reaction on the cell surface for activatable theranostics. Anal Chem 87:6470–6474

    Article  CAS  Google Scholar 

  • Wang Y, Yu Z, Zhang Z et al (2016) Orderly nucleic acid aggregates by electrostatic self-assembly in single cells for miRNA detection and visualizing. Analyst 141:2861–2864

    Article  CAS  Google Scholar 

  • Wei J, Gong X, Wang Q et al (2018) Construction of an autonomously concatenated hybridization chain reaction for signal amplification and intracellular imaging. Chem Sci 9:52–61

    Article  CAS  Google Scholar 

  • Wiraja C, Yeo DC, Tham KC et al (2018) Real-time imaging of dynamic cell reprogramming with nanosensors. Small 14:e1703440

    Article  Google Scholar 

  • Wu P, Hwang K, Lan T et al (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc 135:5254–5257

    Article  CAS  Google Scholar 

  • Wu C, Cansiz S, Zhang L et al (2015a) A nonenzymatic hairpin DNA cascade reaction provides high signal gain of mRNA imaging inside live cells. J Am Chem Soc 137:4900–4903

    Article  CAS  Google Scholar 

  • Wu Z, Liu GQ, Yang XL et al (2015b) Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J Am Chem Soc 137:6829–6836

    Article  CAS  Google Scholar 

  • Wu Z, Fan H, Satyavolu NSR et al (2017) Imaging endogenous metal ions in living cells using a DNAzyme-catalytic hairpin assembly probe. Angew Chem Int Ed 56:8721–8725

    Article  CAS  Google Scholar 

  • Xia Y, Zhang R, Wang Z et al (2017) Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes. Chem Soc Rev 46:2824–2843

    Article  CAS  Google Scholar 

  • Xuan F, Fan TW, Hsing I-M (2015) Electrochemical interrogation of kinetically-controlled dendritic DNA/PNA assembly for immobilization-free and enzyme-free nucleic acids sensing. ACS Nano 9:5027–5033

    Article  CAS  Google Scholar 

  • Xue C, Zhang SX, Ouyang CH et al (2018) Target-induced catalytic assembly of y-shaped DNA and its application for in situ imaging of microRNAs. Angew Chem Int Ed 57:9739–9743

    Article  CAS  Google Scholar 

  • Yang Y, Huang J, Yang X et al (2016) Aptazyme-gold nanoparticle sensor for amplified molecular probing in living cells. Anal Chem 88:5981–5987

    Article  CAS  Google Scholar 

  • Yang J, Huang J, Yang XH et al (2017) Gold nanoparticle based hairpin-locked-DNAzyme probe for amplified miRNA imaging in living cells. Anal Chem 89:5850–5856

    Article  CAS  Google Scholar 

  • Zhang X, Li R, Chen Y et al (2016a) Applying DNA rolling circle amplification in fluorescence imaging of cell surface glycans labeled by a metabolic method. Chem Sci 7:6182–6189

    Article  CAS  Google Scholar 

  • Zhang Z, Wang Y, Zhang N et al (2016b) Self-assembly of nucleic acid molecular aggregates catalyzed by a triple-helix probe for miRNA detection and single cell imaging. Chem Sci 7:4184–4189

    Article  CAS  Google Scholar 

  • Zhang Z, Jiao Y, Zhu M et al (2017) Nuclear-shell biopolymers initiated by telomere elongation for individual cancer cell imaging and drug delivery. Anal Chem 89:4320–4327

    Article  CAS  Google Scholar 

  • Zhang Z, Zhong C, Yuan T et al (2018) A hybridization chain reaction amplification strategy for fluorescence imaging of human telomerase activity in living cells. Methods Appl Fluoresc 6:045003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Q. (2019). Nucleic Acid Amplification Strategy-Based Fluorescence Imaging. In: Zhang, S., Bi, S., Song, X. (eds) Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-7044-1_11

Download citation

Publish with us

Policies and ethics