Skip to main content

Strongly Divided Pairs of Integral Domains

  • Chapter
  • First Online:

Part of the book series: Trends in Mathematics ((TM))

Abstract

This work generalizes the recent study of the class of strongly divided (commutative integral) domains. Let \(R \subseteq T\) be domains with (Rm) quasi-local. Then (RT) is said to be a strongly divided pair if, for each ring E such that \(R \subseteq E \subseteq T\) and each \(Q \in \mathrm {Spec}(E)\) such that \(Q\cap R \subset m\), one has \(Q \subset R\). Let \(\overline{R}\) be the integral closure of R in T. Then (RT) is a strongly divided pair if and only if R and \(\overline{R}\) have the same sets of nonmaximal prime ideals and, for each maximal ideal M of \(\overline{R}\), \((\overline{R}_M, T_M)\) is a strongly divided pair. If R is integrally closed in T and R is treed, then (RT) is a strongly divided pair if and only if R[u] is a treed domain for each \(u \in T\). If \(mT=T\) and R is integrally closed in T, then (RT) is a strongly divided pair if and only if \(T=R_p\) for some divided prime ideal p of R and R / p is a strongly divided domain. Examples of strongly divided pairs ((Rm), T) such that \(mT \ne T\) are given using pullbacks with data having prime spectra pinched at some nonmaximal prime ideal. Additional results and examples are given to illustrate the theory and its sharpness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Akiba, A note on AV-domains. Bull. Kyoto Univ. Educ. Ser. B 31, 1–3 (1967)

    MathSciNet  MATH  Google Scholar 

  2. D.F. Anderson, D.E. Dobbs, Pairs of rings with the same prime ideals. Can. J. Math. 32, 362–384 (1980)

    Article  MathSciNet  Google Scholar 

  3. A. Ayache, D.E. Dobbs, Strongly divided domains. Ric. Mat. 65, 127–154 (2016)

    Article  MathSciNet  Google Scholar 

  4. A. Ayache, D.E. Dobbs, Strongly divided rings with zero-divisors. Palest. J. Math. 6, 380–395 (2017)

    MathSciNet  MATH  Google Scholar 

  5. A. Ayache, O. Echi, Valuation and pseudovaluation subrings of an integral domain. Commun. Algebra 34, 2467–2483 (2006)

    Article  MathSciNet  Google Scholar 

  6. A. Ayache, A. Jaballah, Residually algebraic pairs of rings. Math. Z. 225, 49–65 (1997)

    Article  MathSciNet  Google Scholar 

  7. A. Badawi, On divided commutative rings. Commun. Algebra 27, 1465–1474 (1999)

    Article  MathSciNet  Google Scholar 

  8. E.D. Davis, Overrings of commutative rings. III. Normal pairs. Trans. Am. Math. Soc. 182, 175–185 (1973)

    MathSciNet  MATH  Google Scholar 

  9. D.E. Dobbs, On going-down for simple overrings, II. Commun. Algebra 1, 439–458 (1974)

    Article  MathSciNet  Google Scholar 

  10. D.E. Dobbs, Divided rings and going down. Pac. J. Math. 67, 353–363 (1976)

    Article  MathSciNet  Google Scholar 

  11. D.E. Dobbs, On INC-extensions and polynomials with unit content. Can. Math. Bull. 23, 37–42 (1980)

    Article  MathSciNet  Google Scholar 

  12. D.E. Dobbs, Lying-over pairs of commutative rings. Can. J. Math. 33, 454–475 (1981)

    Article  MathSciNet  Google Scholar 

  13. D.E. Dobbs, M. Fontana, J.A. Huckaba, I.J. Papick, Strong ring extensions and pseudo-valuation domains. Houst. J. Math. 8, 167–184 (1982)

    MATH  Google Scholar 

  14. D.E. Dobbs, M. Fontana, I.J. Papick, Direct limits and going-down. Comment. Math. Univ. St. Paul. 31, 129–135 (1982)

    MathSciNet  MATH  Google Scholar 

  15. D.E. Dobbs, G. Picavet, M. Picavet-L’Hermitte, Characterizing the ring extensions that satisfy FIP or FCP. J. Algebra 371, 391–429 (2012)

    Article  MathSciNet  Google Scholar 

  16. D.E. Dobbs, J. Shapiro, Normal pairs with zero-divisors. J. Algebra Appl. 10, 335–356 (2011)

    Article  MathSciNet  Google Scholar 

  17. D. Ferrand, J.-P. Olivier, Homomorphismes minimaux d’anneaux. J. Algebra 16, 461–471 (1970)

    Article  MathSciNet  Google Scholar 

  18. M. Fontana, Topologically defined classes of commutative rings. Ann. Mat. Pura Appl. 123, 331–355 (1980)

    Article  MathSciNet  Google Scholar 

  19. R. Gilmer, Multiplicative Ideal Theory (Dekker, New York, 1972)

    MATH  Google Scholar 

  20. J.R. Hedstrom, E.G. Houston, Pseudo-valuation domains. Pac. J. Math. 75, 137–147 (1978)

    Article  MathSciNet  Google Scholar 

  21. I. Kaplansky, Commutative Rings, rev edn. (University Chicago Press, Chicago, 1974)

    MATH  Google Scholar 

  22. M. Knebusch, D. Zhang, Manis Valuations and Prüfer Extensions I. Lecture Notes in Mathematics, vol. 1791. Springer, Berlin (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Dobbs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayache, A., Dobbs, D.E. (2019). Strongly Divided Pairs of Integral Domains. In: Badawi, A., Coykendall, J. (eds) Advances in Commutative Algebra. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-7028-1_4

Download citation

Publish with us

Policies and ethics