Skip to main content

On \(\star \)-Semi-homogeneous Integral Domains

  • Chapter
  • First Online:
Advances in Commutative Algebra

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let \(\star \) be a finite character star-operation defined on an integral domain D. A nonzero finitely generated ideal of D is \(\star \)-homogeneous if it is contained in a unique maximal \(\star \)-ideal. And D is called a \(\star \)-semi-homogeneous (\(\star \)-SH) domain if every proper nonzero principal ideal of D is a \(\star \)-product of \(\star \)-homogeneous ideals. Then D is a \(\star \)-semi-homogeneous domain if and only if the intersection D \(=\) \(\underset{P\in \star \text {-}{\text {Max}}(D)}{\bigcap D_{P}}\) is independent and locally finite where \(\star \)-\({\text {Max}}(D)\) is the set of maximal \(\star \)-ideals of D. The \(\star \)-SH domains include h-local domains, weakly Krull domains, Krull domains, generalized Krull domains, and independent rings of Krull type. We show that by modifying the definition of a \(\star \)-homogeneous ideal we get a theory of each of these special cases of \(\star \)-SH domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.D. Anderson, \(\pi \)-domains, overrings, and divisorial ideals. Glasgow Math. J. 19, 199–203 (1978)

    Article  MathSciNet  Google Scholar 

  2. D.D. Anderson, Star-operations induced by overrings. Commun. Algebra 16, 2535–2553 (1988)

    Article  MathSciNet  Google Scholar 

  3. D.D. Anderson, D.F. Anderson, Generalized GCD domains. Comment. Math. Univ. St. Pauli. 27, 215–221 (1979)

    Google Scholar 

  4. D.D. Anderson, S.J. Cook, Two star operations and their induced lattices. Commun. Algebra. 28, 2461–2476 (2000)

    Article  MathSciNet  Google Scholar 

  5. D.D. Anderson, E.G. Houston, M. Zafrullah, t-linked extensions, the t-class group, and Nagata’s theorem. J. Pure Appl. Algebra 86, 109–124 (1993)

    Article  MathSciNet  Google Scholar 

  6. D.D. Anderson, L.A. Mahaney, On primary factorization. J. Pure Appl. Algebra 54, 141–154 (1988)

    Article  MathSciNet  Google Scholar 

  7. D.D. Anderson, J.L. Mott, M. Zafrullah, Finite character representations of integral domains. Boll. Un. Mat. Ital. 6(B(7)), 613–630 (1992)

    Google Scholar 

  8. D.D. Anderson, M. Zafrullah, Weakly factorial domains and groups of divisibility. Proc. Am. Math. Soc. 109, 907–913 (1990)

    Article  MathSciNet  Google Scholar 

  9. D.D. Anderson, M. Zafrullah, Almost Bezout domains. J. Algebra 142, 285–309 (1991)

    Article  MathSciNet  Google Scholar 

  10. D.D. Anderson, M. Zafrullah, Independent locally-finite intersections of localizations. Houston J. Math. 25, 109–124 (1999)

    Google Scholar 

  11. D.F. Anderson, A general theory of class groups. Commun. Algebra 16, 805–847 (1988)

    Article  MathSciNet  Google Scholar 

  12. A. Bouvier, Le groupe de classes d’un anneau integre. 107 erne Congres National des Societe Savantes. Brest, France, Fasc. IV, 85–92 (1982)

    Google Scholar 

  13. A. Bouvier, M. Zafrullah, On some class groups of an integral domain. Bull. Soc. Math. Greece 29, 45–49 (1988)

    Google Scholar 

  14. R. Gilmer, Multiplicative Ideal Theory (Marcel Dekker, New York, 1972)

    Google Scholar 

  15. M. Griffin, Rings of Krull type. J. Reine Angew. Math. 229, 1–27 (1968)

    Google Scholar 

  16. F. Halter-Koch, Ideal Systems - An Introduction to Multiplicative Ideal Theory (Marcel Dekker, New York, 1998)

    Google Scholar 

  17. E.G. Houston, M. Zafrullah, \(\star \) Super potent domains. J. Commut. Algebra, to appear

    Google Scholar 

  18. P. Jaffard, Les Systèmes d’ Ideáux (Dunod, Paris, 1962)

    Google Scholar 

  19. I. Kaplansky, Commutative Rings, revised edn (Polygonal Publishing, Washington, 1994)

    Google Scholar 

  20. E. Matlis, Torsion-Free Modules (The University of Chicago Press, Chicago, 1972)

    Google Scholar 

  21. U. Storch, Fastfaktorielle Ringe. Schritenreiche Math. Inst. Univ. Munster, vol. 36, Munster (1967)

    Google Scholar 

  22. M. Zafrullah, A general theory of almost factoriality. Manuscripta Math. 51, 29–62 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anderson, D.D., Zafrullah, M. (2019). On \(\star \)-Semi-homogeneous Integral Domains. In: Badawi, A., Coykendall, J. (eds) Advances in Commutative Algebra. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-7028-1_2

Download citation

Publish with us

Policies and ethics