Advertisement

Analysis and Comparison of Uncertain Means Clustering Algorithm

  • Nini ZhangEmail author
  • Lihua Qi
  • Xiaomei Qin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 980)

Abstract

Clustering analysis is an important method of multivariate statistical analysis. It has important applications in pattern recognition, artificial intelligence, automatic control and other fields. An iterative algorithm called uncertain means clustering is defined by analyzing the contribution of the features to the sample and calculating the degree of membership based on the weight. In this paper, we use the uncertain means clustering algorithm to cluster IRIS data to test the clustering accuracy, convergence speed and robustness of the algorithm. At the same time, compared with the traditional clustering algorithm, which K-Means clustering algorithm and KNN clustering algorithm, the experimental results show that the uncertain means clustering algorithm has good performance in the accuracy and convergence speed of the sample data sets, and is an effective unsupervised clustering algorithm.

Keywords

Uncertain means clustering K-Means clustering KNN clustering Unsupervised clustering 

References

  1. 1.
    Jain, A.K., Flynn, P.J.: Image segmentation using clustering. In: Ahuja, N., Bowyer, K. (eds.) Advances in Image Understanding: A Festchrift for Azriel Rosenfeld, pp. 65–83. IEEE Press, Piscataway (1996)Google Scholar
  2. 2.
    Cades, I., Smyth, P., Mannila, H.: Probabilistic modeling of transactional data with applications to profiling, visualization and prediction, sigmod. In: Proceedings of the 7th ACM SIGKDD, pp. 37–46. ACM Press, San Francisco (2001). http://www.sigkdd.org/kdd2001
  3. 3.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  4. 4.
    刘开第, 王义闹, 吴和琴. 四种不确定性信息概念与联系. 华中理工大学学报 (4), 68–70 (1999)Google Scholar
  5. 5.
    刘开第, 李万庆, 庞彦军. 未确知集. 数学的实践与认识, 36(10), 197–204 (2006)Google Scholar
  6. 6.
    刘开第, 庞彦军, 吴和琴等. 信息及其数学表达. 系统工程理论与实践 (8), 91–93 (1999)Google Scholar
  7. 7.
    管祥兵, 刘历波, 代兰, 任向阳. 基于未确聚类的动态联盟伙伴选择研究. 河北建筑科技学院学报 23(1), 44–45 (2006)Google Scholar
  8. 8.
    曹庆奎, 任向阳, 刘琛, 等. 基于粗集-未确知测度模型的企业技术创新能力评价研究. 系统工程理论与实践, 26(4), 32–34 (2006)Google Scholar
  9. 9.
    刘开第, 庞彦军, 孙光勇. 城市环境质量的未确知测度评价. 系统工程理论与实践, 19(12), 31–32 (1999)Google Scholar
  10. 10.
    庞彦军, 刘立民, 刘开第. 未确知均值聚类. 河北工程大学学报(自然科学版) 27(4), 98–100 (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Information Electrical EngineeringUniversity of Engineering HebeiHandanChina

Personalised recommendations