Skip to main content

Gross Error Elimination of ICESat/GLAS Data in Typical Land Areas

  • Conference paper
  • First Online:
Geo-informatics in Sustainable Ecosystem and Society (GSES 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 980))

  • 843 Accesses

Abstract

The United States launched ICESat satellite in 2003 and the GLAS system was mounted on ICESat satellite. Under ideal conditions the accuracy of laser altimetry data by the GLAS system can reach centimeter level. Aimed at land areas, this paper proposes a method which combines SRTM data, GLA14 parameters and GLA01 waveform data, screens the ICESat/GLAS laser altimetry data, and eliminates invalid data and gross errors. This method has been used to screen the regional data of Tianjin and Hebei. The accuracy of ICESat/GLAS laser altimetry data in Tianjin region reached 0.8 m. But in Hebei region, due to the low accuracy of the reference data, the accuracy of the screened data is about 3 m. The method can effectively reduce ICESat/GLAS data collection workload in the field control points and improve the utilization efficiency of ICESat/GLAS data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, H.: The study of ice sheet height change in Antarctic by using ICESat laser altimeter data. Liaoning Technical University, Liaoning (2010)

    Google Scholar 

  2. Li, S.: Recent progress of spaceborne laser altimeter system. Opt. Optoelectron. Technol. 2(6), 4–6 (2004)

    Google Scholar 

  3. Ma, Y.: Data process and elevation error analysis of spaceborne laser altimeter. Wuhan University, Hubei (2013)

    Google Scholar 

  4. Wen, H., Liu, H., Chang, X., et al.: Accuracy assessment of ICESAT laser altimeter data using GPS measurements. Geomatics Inf. Sci. Wuhan Univ. 36(3), 262–266 (2011)

    Google Scholar 

  5. Wang, X.W., Cheng, X., Huang, H.B., Li, Z.: DEM production for Dome-A combining GPS and GLAS data. J. Remote Sens. 17(2), 439–451 (2013)

    Article  Google Scholar 

  6. Magruder, L.A., Webb, C.E., Urban, T., et al.: ICESat altimetry data product verification at white sands space harbo. IEEE Trans. Geosci. Remote Sens. 45(1), 147–155 (2007)

    Article  Google Scholar 

  7. Fricker, H.A., Borsa, A., Minster, B., et al.: Assessment of ICESat performance at the Salar de Uyuni, Bolivia. Geophys. Res. Lett. 32(21) (2005)

    Google Scholar 

  8. Kurtz, N.T., Markus, T., Krabill, W., et al.: Comparison of ICESat data with airborne laser altimeter measurements over Arctic sea ice. IEEE Trans. Geosci. Remote Sens. 46(7), 1913–1924 (2008)

    Article  Google Scholar 

  9. Huang, X.D., Xie, H., Zhang, G., et al.: A novel solution for outlier removal of ICESat altimetry data: a case study in the Yili watershed, China. Front. Earth Sci. 7(2), 217–226 (2013)

    Article  Google Scholar 

  10. Wan, J., Liao, J.J., Xu, T., et al.: Accuracy evaluation of SRTM data based on ICESat/GLAS altimeter data: a case study in the Tibetan Plateau. Remote Sens. Land Resour. 27(1), 100–105 (2015)

    Google Scholar 

  11. Wang, X.W., Cheng, X., Li, Z., et al.: Lake water footprint identification from time-series ICESat/GLAS data. IEEE Geosc. Remote Sens. Lett. 9(3), 333–337 (2012)

    Article  Google Scholar 

  12. Huang, H.: Determination of polar ice sheet change from ICESat and GRACE satellite observations. Wuhan University, Wuhan (2011)

    Google Scholar 

  13. González, J.H., Bachmann, M., Scheiber, R., et al.: Definition of ICESat selection criteria for their use as height references for TanDEM-X. IEEE Trans. Geosci. Remote Sens. 48(6), 2750–2757 (2010)

    Article  Google Scholar 

  14. Duong, H., Lindenbergh, R., Pfeifer, N., et al.: ICESat full-waveform altimetry compared to airborne LASER scanning altimetry over the Netherlands. IEEE Trans. Geosci. Remote Sens. 47(10), 3365–3378 (2009)

    Article  Google Scholar 

  15. Wang, L.: A brief introduction to US shuttle radar topography mission. Bull. Surveying Mapp. 12, 38–40 (2000)

    Google Scholar 

  16. Dongchen, E., Xu, Y., Zhang, X.: ICESat’s performance and its application in Dome A area in Antarctica. Geomatics Inf. Sci. Wuhan Univ. 32(12), 1139–1142 (2007)

    Google Scholar 

  17. Li, J., Fan, C., Chu, Y., et al.: Using ICESAT altimeter data to determine the Antarctic ice sheet elevation model. Geomatics Inf. Sci. Wuhan Univ. 33(3), 226–228, 248 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RuRen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, R., Zhang, C., Yang, Z., Li, G., Liu, H. (2019). Gross Error Elimination of ICESat/GLAS Data in Typical Land Areas. In: Xie, Y., Zhang, A., Liu, H., Feng, L. (eds) Geo-informatics in Sustainable Ecosystem and Society. GSES 2018. Communications in Computer and Information Science, vol 980. Springer, Singapore. https://doi.org/10.1007/978-981-13-7025-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7025-0_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7024-3

  • Online ISBN: 978-981-13-7025-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics