Advertisement

Research on GNSS Multi-system Relative Positioning Algorithm

  • Yongchun Deng
  • Shuaipeng Wang
  • Chao LiuEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 980)

Abstract

With the development of Global Navigation Satellite System (GNSS) technology, GNSS combination of the multi-frequency and multi-system application will become one of the main development trends of GNSS navigation and positioning. Multi-system combined positioning can not only greatly increase the number of available satellites, but also improve satellite space geometry and improve positioning accuracy and stability. Based on the GNSS multi-system baseline data processing theory, this paper studies the observations of GNSS multi-system combination positioning including the linear combinations, data preprocessing, function model of data combination, stochastic model, etc., and then uses the measured data to verify and analyze the experiment.

Keywords

GNSS Combined position Stochastic model Baseline solution 

Notes

Acknowledgments

The project was financially supported by the National Natural Science Foundation of China (no. 41404004).

References

  1. 1.
    Tsiolkovsky, K.: From Wikipedia, the free encyclopedia [EB/OL], 3 May 2015. http://en.Wikipedia.org/wiki/Satellite-navigation
  2. 2.
    Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS — Global Navigation Satellite Systems. Springer, Vienna (2008).  https://doi.org/10.1007/978-3-211-73017-1CrossRefGoogle Scholar
  3. 3.
    Blewitt, G.: Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. J. Geophys. Res. Solid Earth 94, 10187–10203 (1989)CrossRefGoogle Scholar
  4. 4.
    Blewitt, G.: An automatic editing algorithm for GPS data. Geophys. Res. Lett. 17, 199–202 (2013)CrossRefGoogle Scholar
  5. 5.
    Han, S.: GPS combined observation theory and application. J. Surv. Mapp., 8–13 (1995). (in Chinese)Google Scholar
  6. 6.
    Chang, Q., Liu, C., Zhang, Q.: Study for theory of the combinations of GPScarrier phase observations. J. Aviat. 19, 101–105 (1998). (in Chinese)Google Scholar
  7. 7.
    Wang, Z., Liu, J.: Model research on phase combination observations of Galileo satellite positioning system. Geomat. Inf. Sci. Wuhan Univ. 28, 723–727 (2003). (in Chinese)Google Scholar
  8. 8.
    Simsky, A.: Three’s the charm. Triple-frequency combinations in future GNSS (2006)Google Scholar
  9. 9.
    Richert, T., El-Sheimy, N.: Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems. GPS Solut. 11, 11–19 (2007)CrossRefGoogle Scholar
  10. 10.
    Cocard, M., Bourgon, S., Kamali, O., Collins, P.: A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS. J. Geod. 82, 555–564 (2008)CrossRefGoogle Scholar
  11. 11.
    Urquhart, L.: An analysis of multi-frequency carrier phase linear combinations for GNSS. Senior Technical report, Department of Geodesy and Geomatics Engineering Technical Report No. 263, University of New Brunswick, Fredericton, New Brunswick, Canada (2008)Google Scholar
  12. 12.
    Li, B., Shen, Y., Feng, Y.: Long-distance real-time precision navigation using tri-band GNSS. Geomat. Inf. Sci. Wuhan Univ. 34, 782–786 (2009). (in Chinese)Google Scholar
  13. 13.
    Fan, J., Wang, F., Guo, G.: Research on automatic detection and correction of weekly jump of GPS tri-band non-difference observation data. Sci. Surv. Mapping. 31, 24–26 (2006)Google Scholar
  14. 14.
    Xiong, W., Wu, Y., Sun, Z., Wang, Z.: Application of multi-frequency data combination in cycle slip detection and repair. Geomat. Inf. Sci. Wuhan Univ. 32, 319–322 (2007). (in Chinese)Google Scholar
  15. 15.
    Sun, B., Ou, J., Yang, X., Liu, J., Sheng, C.: Precise orbit determination of GEO navigation satellite based on multi-frequency carrier phase. In: China Satellite Navigation Conference, No. 04, pp. 319–322 (2007). (in Chinese). (2010)Google Scholar
  16. 16.
    Chen, H., Xu, C., Song, X., Sun, W.: Study on stochastic models of BDS/GPS short baseline solution. Sci. Surv. Mapp. 41, 12–17 (2016). (in Chinese)Google Scholar
  17. 17.
    Wang, F.L., Wang, Q.X., Cheng, Y.Y., Wei, C.: Weighting methods in GPS/GLONASS integrated positioning. Sci. Surv. Mapp. (2013). (in Chinese)Google Scholar
  18. 18.
    Yang, Y.X., Jinlong, L.I., Wang, A.B., Junyi, X.U., Haibo, H.E., Guo, H.R., et al.: Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Sci. China Earth Sci. 57(1), 144–152 (2014)CrossRefGoogle Scholar
  19. 19.
    Li, J.: BDS/GPS multi-frequency real-time kinematic positioning theory and algorithms. Acta Geod. Cartogr. Sin., 44(11) (2015)Google Scholar
  20. 20.
    Wang, L., Li, Z., Yuan, H., Zhou, K.: Comparative analysis of relative positioning performance of dual-frequency single epoch with BDS/GPS/GLONASS combination. Chin. Sci. Bull., 857–868 (2015). (in Chinese)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of GeomaticsAnhui University of Science and TechnologyHuainanChina
  2. 2.Shanghai Tongyan Civil Engineering Technology Co., Ltd.ShanghaiChina

Personalised recommendations