Advertisement

Bending of Microstructure-Dependent MicroBeams and Finite Element Implementations with R

  • Khameel B. Mustapha
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The bending response of microstructure-dependent miniature beam-like structures is examined within the theoretical framework of the modified couple stress theory. Predicated on a planar assumed displacement field, and adopting the small-strain, linearly elastic and Timoshenko’s shear deformable beam theory assumptions, the equilibrium equations governing the bending response of these structures are established via the variational method. Finite element solutions of the model are sought. The finite element solutions are implemented in the R programming language and then employed to illustrate the influence of size-effect on the bending response of microscale beams.

References

  1. 1.
    J.F. Doyle, Static and Dynamic Analysis of Structures: With an Emphasis on Mechanics and Computer Matrix Methods (Springer, Netherlands, 1991)CrossRefGoogle Scholar
  2. 2.
    M.H. Kahrobaiyan, M. Asghari, M.T. Ahmadian, A strain gradient Timoshenko beam element: Application to MEMS. Acta Mech. 226, 505–525 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R.A. Coutu Jr., P.E. Kladitis, L. Starman, J.R. Reid, A comparison of micro-switch analytic, finite element, and experimental results. Sens. Actuators, A 115, 252–258 (2004)CrossRefGoogle Scholar
  4. 4.
    V. Kaajakari, Practical MEMS: Small Gear Pub. (2009)Google Scholar
  5. 5.
    S. Khakalo, V. Balobanov, J. Niiranen. Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: Applications to sandwich beams and auxetics. Int. J. Eng. Sci. 127, 33–52 (2018)Google Scholar
  6. 6.
    B.R. Goncalves, A. Karttunen, J. Romanoff, J. Reddy, Buckling and free vibration of shear-flexible sandwich beams using a couple-stress-based finite element. Compos. Struct. 165, 233–241 (2017)CrossRefGoogle Scholar
  7. 7.
    A.T. Karttunen, J. Romanoff, J. Reddy, Exact microstructure-dependent Timoshenko beam element. Int. J. Mech. Sci. 111, 35–42 (2016)CrossRefGoogle Scholar
  8. 8.
    C.L. Dym, I.H. Shames, Solid mechanics: A variational approach, Augmented edn. (Springer, New York, 2013)Google Scholar
  9. 9.
    R. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Wulfinghoff, E. Bayerschen, T. Böhlke, Micromechanical simulation of the Hall-Petch effect with a crystal gradient theory including a grain boundary yield criterion. PAMM 13, 15–18 (2013)CrossRefGoogle Scholar
  11. 11.
    W.B. Anderson, R.S. Lakes, Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. Mater. Sci. 29, 6413–6419 (1994)Google Scholar
  12. 12.
    R. Lakes, Size effects and micromechanics of a porous solid. J. Mater. Sci. 18, 2572–2580 (1983)Google Scholar
  13. 13.
    P.R. Onck, E.W. Andrews, L.J. Gibson, Size effects in ductile cellular solids. Part I: modeling. Int. J. Mech. Sci. 43, 681–699 (2001)Google Scholar
  14. 14.
    P. Giovine, L. Margheriti, M.P. Speciale, On wave propagation in porous media with strain gradient effects. Comput. Math. Appl. 55, 307–318 (2008)Google Scholar
  15. 15.
    A. Kelly, Precipitation hardening (Pergamon Press, 1963)Google Scholar
  16. 16.
    R. Ebeling, M.F. Ashby, Dispersion hardening of copper single crystals. Philos. Mag. 13, 805–834 (1966)Google Scholar
  17. 17.
    M.F. Ashby, The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)Google Scholar
  18. 18.
    J.W. Hutchinson, Plasticity at the micron scale. Int. J. Solids Struct. 37, 225–238 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    D.C.C. Lam, A.C.M. Chong, Indentation model and strain gradient plasticity law for glassy polymers. J. Mater. Res. 14, 3784–3788 (1999)CrossRefGoogle Scholar
  20. 20.
    H. Askes, E.C. Aifantis, Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)Google Scholar
  21. 21.
    J. Dyszlewicz, Micropolar Theory of Elasticity (Springer, Heidelberg, 2004)CrossRefGoogle Scholar
  22. 22.
    H.-T. Thai, T.P. Vo, T.-K. Nguyen, S.-E. Kim, A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Khakalo, J. Niiranen, Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: For materials and structures from nano- to macro-scales. Eur. J. Mech. A/Solids 71, 292–319 (2018)Google Scholar
  24. 24.
    W. Voigt, Theoretische studien über die elasticitätsverhältnisse der krystalle: Königliche Gesellschaft der Wissenschaften zu Göttingen (1887)Google Scholar
  25. 25.
    E. Cosserat, F. Cosserat, Théorie des corps déformables (1909)Google Scholar
  26. 26.
    R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R.A. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)MathSciNetCrossRefGoogle Scholar
  28. 28.
    W. Koiter, Couple-stress in the theory of elasticity, in Proceedings of the K. Ned. Akad. Wet (1964), pp. 17–44Google Scholar
  29. 29.
    A.C. Eringen, A unified theory of thermomechanical materials. Int. J. Eng. Sci. 4, 179–202 (1966)MathSciNetCrossRefGoogle Scholar
  30. 30.
    A.C. Eringen, E.S. Suhubi, Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2, 189–203 (1964)Google Scholar
  31. 31.
    R.D. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetCrossRefGoogle Scholar
  32. 32.
    R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)Google Scholar
  33. 33.
    R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)Google Scholar
  34. 34.
    K.B. Mustapha, D. Ruan, Size-dependent axial dynamics of magnetically-sensitive strain gradient microbars with end attachments. Int. J. Mech. Sci. 9495, 96–110 (2015)Google Scholar
  35. 35.
    K.B. Mustapha, B.T. Wong, Torsional frequency analyses of microtubules with end attachments. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 96, 824–842 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)CrossRefGoogle Scholar
  37. 37.
    F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)Google Scholar
  38. 38.
    J.N. Reddy, Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    H.M. Ma, X.L. Gao, J.N. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)MathSciNetCrossRefGoogle Scholar
  40. 40.
    A.C.M. Chong, F. Yang, D.C.C. Lam, P. Tong, Torsion and bending of micron-scaled structures. J. Mater. Res. 16, 1052–1058 (2001)Google Scholar
  41. 41.
    A.H. Nayfeh, P.F. Pai, Linear and Nonlinear Structural Mechanics (Wiley, 2008)Google Scholar
  42. 42.
    J.R. Barber, Elasticity (Springer, Heidelberg, 2002)Google Scholar
  43. 43.
    E.B. Magrab, Vibrations of Elastic Systems: With Applications to MEMS and NEMS, vol 184 (Springer Science & Business Media, 2012)Google Scholar
  44. 44.
    M.H. Kahrobaiyan, M. Asghari, M.T. Ahmadian, A Timoshenko beam element based on the modified couple stress theory. Int. J. Mech. Sci. 79, 75–83 (2014)Google Scholar
  45. 45.
    I. Babuska, B.A. Szabo, I.N. Katz, The p-version of the finite element method. SIAM J. Numer. Anal. 18, 515–545 (1981)MathSciNetCrossRefGoogle Scholar
  46. 46.
    T. Apel, J.M. Melenk, Interpolation and quasi-Interpolation in h- and hp-version finite element spaces. Encyclopedia of Computational Mechanics, 2nd edn. (2017), pp. 1–33Google Scholar
  47. 47.
    A.M. Dehrouyeh-Semnani, A. Bahrami, On size-dependent Timoshenko beam element based on modified couple stress theory. Int. J. Eng. Sci. 107, 134–148 (2016)MathSciNetCrossRefGoogle Scholar
  48. 48.
    A. Arbind, J. Reddy, Nonlinear analysis of functionally graded microstructure-dependent beams. Compos. Struct. 98, 272–281 (2013)CrossRefGoogle Scholar
  49. 49.
    C. Liebold, W.H. Müller, Comparison of gradient elasticity models for the bending of micromaterials. Comput. Mater. Sci. 116, 52–61 (2016)CrossRefGoogle Scholar
  50. 50.
    Z. Li, Y. He, J. Lei, S. Guo, D. Liu, L. Wang, A standard experimental method for determining the material length scale based on modified couple stress theory. Int. J. Mech. Sci. 141, 198–205 (2018)CrossRefGoogle Scholar
  51. 51.
    R. Narayanaswami, H. Adelman, Inclusion of transverse shear deformation in finite element displacement formulations. AIAA J. 12, 1613–1614 (1974)CrossRefGoogle Scholar
  52. 52.
    A. Öchsner, Computational Statics and Dynamics: An Introduction Based on the Finite Element Method (Springer, Singapore, 2016)Google Scholar
  53. 53.
    T.B. Jones, N.G. Nenadic, Electromechanics and MEMS (Cambridge University Press, 2013)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Khameel B. Mustapha
    • 1
  1. 1.Department of Mechanical, Materials and Manufacturing EngineeringUniversity of Nottingham Malaysia CampusSemenyihMalaysia

Personalised recommendations