Skip to main content

Reframing Chemistry Learning: The Use of Student-Generated Contexts

  • Chapter
  • First Online:
  • 1173 Accesses

Abstract

This chapter presents a teaching approach that focuses on student-generated contexts and how its use can reframe both chemistry teaching and learning. The eight phases of the Student-Generated Contexts Teaching Approach (SCTA) model—Introduction, Context Generation, Decision, Implementation, Presentation, Discussion, Reflection, and Context Regeneration—are described in terms of individual and collaborative context generation. To determine the nature of the contexts the students themselves generated, decision logs, reflection papers, and audio-recording transcripts were content-analyzed. The emerging themes on the nature of the contexts are: (1) source of the context; (2) level of the context; and (3) student engagement in the context. Sixty-five Grade 10 chemistry students comprised the two heterogeneous intact classes: one group was exposed to Individual Student-Generated Contexts Teaching Approach and another group was exposed to Collaborative Student-Generated Contexts Teaching Approach. The topics covered in the study included acids and bases, neutralization reactions, reduction–oxidation reactions, electrochemical cells, and electroplating. In this chapter, the contexts generated by the two groups are compared in terms of fluency, flexibility, and complexity. Finally, the benefits of using student-generated contexts in the teaching and learning of chemistry are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baruah, J., & Paulus, P. B. (2008). Effects of training on idea generation in groups. Small Group Research, 39, 523–541.

    Article  Google Scholar 

  • Belt, S. T., Leisvik, M. J., Hyde, A. J., & Overton, T. L. (2005). Using a context-based approach to undergraduate chemistry teaching—a case study for introductory physical chemistry. Chemistry Education Research and Practice, 6(3), 166–179.

    Article  Google Scholar 

  • Child Trends Data Bank. (2013). Science proficiency: Indicators on children and youth. https://www.childtrends.org/wp-content/uploads/2012/10/10_Science_Proficiency.pdf. Acccessed December, 2018.

  • Department of Education. (2013). K-12 curriculum (Science). Pasig City: Bureau of Secondary Education, Philippines Department of Education.

    Google Scholar 

  • Gagnon, G. W., Jr., & Collay, M. (2006). Constructivist learning design. California: Corwin Press.

    Google Scholar 

  • Hill, G., & Holman, J. (2000). Chemistry in context (5th ed.). Cheltenham: Nelson Thornes.

    Google Scholar 

  • Holman, J., & Pilling, G. (2004). Thermodynamics in context: A case study of contextualized teaching for undergraduates. Journal of Chemical Education, 81(3), 373–375.

    Article  Google Scholar 

  • Hsieh, Y. J., & Cifuentes, L. (2003). A cross-cultural study of the effect of student-generated visualization on middle school students’ science concept learning in Texas and Taiwan. Educational Technology Research and Development, 51(3), 90–95.

    Article  Google Scholar 

  • King, D. (2007). Teacher beliefs and constraints in implementing a context-based approach in chemistry. Teaching Science, 53(1), 14–18.

    Google Scholar 

  • Liu, Y.-H., & Yu, F.-Y. (2004). Active learning through student generated questions in physics experimental classrooms. Paper presented at International Conference on Engineering Education, October 2004, Gainesville, Florida.

    Google Scholar 

  • National Academy of Sciences. (2017). National science education standards: An overview. Retrieved from http://books.nap.edu/html/nses/htmloverview.html.

  • Nelson, G. D. (2001). Remarks on the release of the NAEP 2000 science assessment results. AAAS Project 2061. American Association for the Advancement of Science. Retrieved from http://www.project2061.org/newsinfo/press/rl011120a.htm.

  • Nentwig, P. M., Demuth, R., Parchmann, I., Grasel, C., & Ralle, B. (2007). Chemie im context: Situating learning in relevant contexts while systematically developing basic chemical concepts. Journal of Chemical Education, 84(9), 1439–1444.

    Article  Google Scholar 

  • Palmer, D. (1997). The effect of context on students’ reasoning about forces. International Journal of Science Education, 19(6), 681–696.

    Article  Google Scholar 

  • Pittman, K. M. (1999). Student-generated analogies: Another way of knowing? Journal of Research in Science Teaching, 36(1), 1–22.

    Article  Google Scholar 

  • Ramsden, J. M. (1997). How does a context-based approach influence understanding of key chemical ideas at 16+? International Journal of Science Education, 19(6), 697–710.

    Article  Google Scholar 

  • Rayner, A. (2005). Reflections on context-based science teaching: A case study of physics for students of physiotherapy. In Uniserve science blended learning symposium proceedings. Retrieved from http://science.uniserve.edu.au/pubs/procs/wshop10/2005Rayner.pdf.

  • Roth, W. M., & Roychoudhury, A. (1993). The development of science process skills in authentic contexts. Journal of Research in Science Teaching, 30(2), 127–152.

    Article  Google Scholar 

  • Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2006). The use of scientific literacy taxonomy for assessing the development of chemical literacy among high school students. Chemistry Education Research and Practice, 7(4), 203–225.

    Article  Google Scholar 

  • Spier-Dance, L., Mayer-Smith, J., Dance, N., & Khan, S. (2005). The role of student-generated analogies in promoting conceptual understanding for undergraduate chemistry students. Research in Science and Technological Education, 23(2), 163–178.

    Article  Google Scholar 

  • Sutman, F. X., & Bruce, M. H. (1992). Chemistry in the community: A five-year evaluation. Journal of Chemical Education, 69(7), 564–567.

    Article  Google Scholar 

  • Szeto, A. K. (2008). Teaching science content, concepts and processes with contexts. In Ideas on Teaching. Centre for Development of Teaching and Learning, National University of Singapore. http://www.cdtl.nus.edu.sg/Ideas/iot100.htm Accessed December, 2018.

Download references

Acknowledgements

Thank you very much to: Philippine Department of Science and Technology for the Ph.D. Scholarship; University of the Philippines Diliman Chancellor Michael L. Tan for the Dissertation Aid and the Research Dissemination Grant; University of the Philippines Diliman Office of the Vice-Chancellor for Research and Development through its Vice-Chancellor Fidel R. Nemenzo for the Dissertation Grant; and U.P. College of Education Scholarship Committee for the Dissertation Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwehna Elinore S. Paderna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paderna, E.E.S., Yangco, R.T., Ferido, M.B. (2019). Reframing Chemistry Learning: The Use of Student-Generated Contexts. In: Schultz, M., Schmid, S., Lawrie, G. (eds) Research and Practice in Chemistry Education. Springer, Singapore. https://doi.org/10.1007/978-981-13-6998-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6998-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6997-1

  • Online ISBN: 978-981-13-6998-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics