Skip to main content

Actinobacteria for Biotic Stress Management

  • Chapter
  • First Online:

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 13))

Abstract

Actinobacteria are one of the active members of soil micro flora, and they play a key role in soil nutrients cycling and crop yield. Actinobacteria in rhizosphere of different plants produce various growth-promoting substances that stimulate growth of plants even under unfavorable environmental conditions such as drought, heavy metal-polluted soils, salinity, and nutrient deficiencies. Several Actinobacteria are involved in the solubilization of phosphate and zinc in soil which play significant role in number of metabolic pathways. They also produce plant hormones such as auxins and gibberellins which promote plant growth by increasing seed germination, root elongation, and dry weight of the root. Production of lytic enzymes such as amylase, protease, cellulase, chitinase, and glucanase plays an important role in plant disease control and in turn improves soil health. Various Actinobacteria are found to produce different types of siderophores which starve plant pathogens for iron and inhibit their growth. These multifaceted plant growth-promoting activities of Actinobacteria make them an agriculturally important organism. One of the most important members of this group known as Streptomyces species strain 5406 has also been practiced in China for biological control of pathogens of cotton plant. Actinobacterial role as PGP has been investigated in wheat, rice, and beans. Actinobacteria are also found to produce ACC (1-aminocyclopropane-1-carboxylate) deaminase which protects the plants under environmentally stressful conditions. This chapter summarizes the efforts of researchers to demonstrate the beneficial role of Actinobacteria on plant health and agricultural productivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aldesuquy H, Mansour F, Abo-hamed S (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Article  Google Scholar 

  • Ashrafuzzaman M, Hossen F, Razi I, Hoque M, Islam M, Shahidullah S, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotech 8(7):1247–1252

    CAS  Google Scholar 

  • Becker JO (1988) Role of Siderophores in suppression of species and production of increased-growth response of wheat by fluorescent pseudomonads. Phytopathology 78(6):778

    Article  CAS  Google Scholar 

  • Běhal V (2000) Bioactive products from Streptomyces. Adv Appl Microbiol 47:113–156. https://doi.org/10.1016/S0065-2164(00)47003-6

    Article  PubMed  Google Scholar 

  • Belimov A, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bentley S, Brosch R, Gordon S, Hopwood D, Cole S (2004) Genomics of actinobacteria, the high G+C gram-positive bacteria. In: Fraser CM, Read T, Nelson KE (eds) Microbial genomes. Humana Press, Totowa, pp 333–360

    Google Scholar 

  • Bhardwaj D, Mohammad W, Ranjan Kumar S, Narendra (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Fact 13:66

    Article  Google Scholar 

  • Boiteau RM, Mende DR, Hawco NJ, McIlvin MR, Fitzsimmons JN, Saito MA, Sedwick PN, DeLong EF, Repeta DJ (2016) Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. PNAS 113(50):14237–14242. https://doi.org/10.1073/pnas.1608594113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burckner B, Blechschmidt D (1991) The gibberellin fermentation. Crit Rev Biotechnol 11:163–192

    Article  Google Scholar 

  • Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  Google Scholar 

  • Challis G, Ravel J (2000) Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett 187(2):111–114

    Article  CAS  PubMed  Google Scholar 

  • Crawford HJ, Gur RC, Skolnick B, Gur RE, Benson DM (1993) Effects of hypnosis on regional cerebral blood flow during ischemic pain with and without suggested hypnotic analgesia. Int J Psychophysiol 15(3):181–195. https://doi.org/10.1016/0167-8760(93)90002-7

    Article  CAS  PubMed  Google Scholar 

  • Dastager S, Damare S (2013) Marine Actinobacteria showing phosphate solubilizing efficiency in Chorao Island, Goa, India. Curr Microbiol 66(5):421–427

    Article  CAS  PubMed  Google Scholar 

  • Dunne C, Moenne-Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, O’Gara F (1998) Combining proteolytic and phloroglucino-producing bacteria for improved control of Pythium mediated damping off of sugar beet. Plant Pathol 47:299–307

    Article  Google Scholar 

  • El-Tarabily K (2008) A promotion of tomato (Lycopersiconesculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete Actinobacteria. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • Fiedler H, Krastel P, Muller J, Gebhardt K, Zeeck A (2001) Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett 196(2):147–151

    Article  CAS  PubMed  Google Scholar 

  • Finnie J, Van Staden J (1985) Effect of seed weed concentrate and applied hormones on in vitro cultured tomato roots. J Plant Physiol 120:215–222

    Article  CAS  Google Scholar 

  • Ghosh A, Zhao H, Price ND, Kao KC (2011) Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. PLoS One 6(11):e27316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microb 41(2):109–117

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Grichko V, Glick B (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing Actinobacteria in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517

    Article  Google Scholar 

  • Hamedi J, Mohammadipanah F, Pötter G, Spröer C, Schumann P, Göker M et al (2011) Nocardiopsis arvandia sp. nov., isolated from the sandy soil of Iran. Int J Syst Evol Microbiol 61:1189–1194. https://doi.org/10.1099/ijs.0.022756-0

    Article  CAS  PubMed  Google Scholar 

  • Hamedi J, Imanparast S, Mohammadipanah F (2015) Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites. Iranian J Microbiol 7(1):23–30

    Google Scholar 

  • Hasegawa D, Yamazaki R, Seuront LL (2004) How islands stir and fertilize the upper ocean. Geophys Res Lett 31. https://doi.org/10.1029/2004GL020143

  • Imbert M, Bechet M, Blondeau R (1995) Comparison of the main siderophores produced by some species of Streptomyces. Curr Microbiol 31:129–133

    Article  CAS  Google Scholar 

  • Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2018) Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105. Sci Rep 8. Article number: 1950: 2018

    Google Scholar 

  • Jain PK, Jain PC (2007) Isolation, characterization and antifungal activity of Streptomyces sampsonii GS 1322. Indian J Exp Biol 45:203–206

    Google Scholar 

  • Jeffrey LSH (2008) Isolation, characterization and identification of actinomycetes from agriculture soils at Semongok, Sarawak. Afr J Biotechnol 7(20):3697–3702

    CAS  Google Scholar 

  • Jensen JB, Condron MAM, Yaver D, Robison R, Stevens D, Porter H, Hess WM, Teplow DB, Ford EJ, Strobel GA, Albert H, Castillo UF (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans a. Microbiology 148(9):2675–2685

    Article  PubMed  Google Scholar 

  • Jog R, Nareshkumar G, Rajkumar S (2016) Enhancing soil health and plant growth promotion by Actinobacteria, pp 33–45

    Book  Google Scholar 

  • Kanini GS, Katsifas EA, Savvides AL, Karagouni AD (2013) Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f.sp. lycopersici. Biomed Res Int 2013:387230. https://doi.org/10.1155/2013/387230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karkouri KE, Kowalczewska M, Nicholas A, Said A, Pierre-Edouard F, Didier R (2017) Multi-omics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group rickettsia spp. https://doi.org/10.3389/fmicb.2017.01363

  • Khamna S, Yokota A, Lumyong S (2009) Actinobacteria isolated from medicinal plant rhizospheric soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Kloepper J, Beauchamp C (1992) A review of issues related to measuring of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Kumar PKR, Lonsane BK (1989) Microbial production of gibberellins: state of the art. Adv Applied Microbiol 34:29–139

    Article  CAS  Google Scholar 

  • Lautru S, Deeth R, Bailey L, Challis G (2005) Discovery of a new peptide natural product by streptomyces coelicolor genome mining. Nat Chem Biol 1(5):265–269. https://doi.org/10.1038/nchembio731

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier H (1989) Nocardioform actinobacteria. In: Williams ST, Sharpe ME, Holt G (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore University of Georgia, Athens, pp 2348–2361

    Google Scholar 

  • Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67:209–217

    Article  CAS  PubMed  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4(1):5

    Article  CAS  Google Scholar 

  • Lorito M, Woo S, Garcia F, Colucci G, Harman G, Pintor-Toro J, Filippone E, Muccifora S, Lawrence C, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a novel source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci U S A 95:7860–7865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manulis S, Shafrir H, Epstein E, Lichter A, Barach I (1994) Biosynthesis of indole-3-acetic acid via indole-3-acetamide pathway in Streptomyces spp. Microbiology 140:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–557

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261. https://doi.org/10.1007/BF00008069

    Article  CAS  Google Scholar 

  • Matsukawa E, Nakagawa Y, Limura Y (2007) Stimulatory effect of indole-3acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp. Actinomycetol 21:32–39

    Article  CAS  Google Scholar 

  • Meiwes J, Fiedler HP, Zahner H, Konetschny-Rapp S, Jung G (1990) Production of desferrioxamine E and new analogues by directed fermentation and feeding fermentation. Appl Microbiol Biotechnol 32(5):505–510

    Article  CAS  PubMed  Google Scholar 

  • Muiru WM, Mutitu EW, Mukunya DM (2008) Identification of selected Actinomycete isolates and characterization of their antibiotic metabolites. J Biol Sci 8(6):1021–1026

    Article  Google Scholar 

  • Müller G, Matzanke B, Raymond K (1984) Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. J Bacteriol 60(1):313–318

    Google Scholar 

  • Nascimento FX, Rossi MJ, Soares CRFS, McConkey B, Glick BR (2014) New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 9:e99168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nascimento FX, Rossi MJ, Glick BR (2016) Role of ACC deaminase in stress control of leguminous plants. In: Plant growth promoting actinobacteria. Springer, Singapore, pp 179–192

    Chapter  Google Scholar 

  • Oskay M, Tamer AÜ, Cem A (2004) Antibacterial activity of some Actinomycetes isolated from farming soils of Turkey. Afr J Biotechnol 3:441–446. https://doi.org/10.5897/AJB2004.000-2087

    Article  Google Scholar 

  • Oves-Costales D, Kadi N, Challis GL (2009) The long-overlooked enzymology of a nonribosomal peptide synthetaseindependent pathway for virulence-conferring siderophore biosynthesis. Chem Commun (Camb) 21(43):6530–6541. https://doi.org/10.1039/b913092f

    Article  CAS  Google Scholar 

  • Palaniyandi S, Tomei Z, Conrad H, Zhu X (2011) CD23-dependent transcytosis of IgE and immune complex across the polarized human respiratory epithelial cells. J Immunol 186:3484–3496

    Article  CAS  PubMed  Google Scholar 

  • Patten C, Glick B (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patzer SI, Braun V (2010) Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Biometals. (2012) 25:285–296, 295, 123 Streptomyces sp. ATCC 700974. J Bacteriol 192(2):426–435. https://doi.org/10.1128/JB.01250-09

    Article  CAS  PubMed  Google Scholar 

  • Promod K, Dhevendaran K (1987) On phosphobacteria in Cochin backwater. J Mar Biol Assoc India 29:297–305

    Google Scholar 

  • Rangaswamy V (2012) Improved production of gibberellic acid by Fusarium moniliforme. J Microbiol Res 2(3):51–55

    Article  Google Scholar 

  • Rifat H, Safdar A, Ummay A, Rabia K, Iftikhar A (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Rios-Iribe E, Flores-Coteres L, Gonzalez-Chavira M, GonzalezAlatorre G, Escamilla-Silva EM (2010) Inductive effect produced by a mixture of carbon source in the production of gibberellic acid by Gibberella fujikuroi. World J Microbiol Biotechnol 11:1–7

    Google Scholar 

  • Ryu R, Patten C (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by tyrR in Enterobacter cloacae UW5. Bacteriology 190:7200–7208

    Article  CAS  Google Scholar 

  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Salisbury FB (1994) The role of plant hormones. In: Wilkinson RE (ed) Plant–environment interactions. Marcel Dekker, New York, pp 39–81

    Google Scholar 

  • Sevilla M, Burris G, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophius wild-type and Nif- mutants strains. Mol Plant-Microbe Interact 14:358–366

    Article  CAS  PubMed  Google Scholar 

  • Shenoy V, Kalagudi G (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23:501–513

    Article  CAS  PubMed  Google Scholar 

  • Shivlata L, Satyanarayana T (2017) Actinobacteria in agricultural and environmental sustainability. In: Singh J, Seneviratne G (eds) Agro-environmental sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49724-2_9

    Chapter  Google Scholar 

  • Singh R, Shelke G, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937

    PubMed  PubMed Central  Google Scholar 

  • Srivastava N, Geoffrey H, Alex K, Ilya S, Ruslan S (2014) Dropout: a simple way to prevent neural networks from over fitting. J Mach Learn Res 15:1929–1958

    Google Scholar 

  • Srividya S, Thapa A, Bhat D, Golmei K, Dey N (2012) Streptomyces sp. 9p as effective biocontrol against chilli soilborne fungal phytopathogens. Eur J Exp Biol 2:163–173

    Google Scholar 

  • Steger K, Sjögren ÅM, Jarvis Å, Jansson JK, Sundh I (2007) Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste. J Appl Microbiol 103(2):487–498

    Article  CAS  PubMed  Google Scholar 

  • Stein A, Fortin J, Vallee G (1990) Enhanced rooting of Picea mariana cuttings by ectomycorrhizal fungi. Can J Bot 68:492–498

    Article  Google Scholar 

  • Sutthinan K, Akira Y, Saisamorn L (2009) Actinobacteria isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25(4):649–655

    Article  CAS  Google Scholar 

  • Thangapandian V, Ponmurugan P, Ponmurugan K (2007) Actinobacteria diversity in the rhizosphere soils of different medicinal plants in Kolly Hills-Tamilnadu, India, for secondary metabolite production. Asian J Plant Sci 6:66–70. https://doi.org/10.3923/ajps.2007

    Article  Google Scholar 

  • Tomiya T, Uramoto M, Isono K (1990) Isolation and structure of phosphazomycin C. J Antibiot 43(1):118–121

    Article  CAS  Google Scholar 

  • Trejo-Estrada S, Paszczynski A, Crawford D (1998) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biotech 21:81. https://doi.org/10.1038/sj.jim.2900549

    Article  CAS  Google Scholar 

  • Trigo C, Ball AS (1994) Production of extracellular enzymes during the solubilisation of straw by Thermomonospora fusca BD25. Appl Microbiol Biotechnol 41:366–372. https://doi.org/10.1007/BF00221233

    Article  CAS  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma J, Yadav J, Tiwari K, Lavakush S (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res:1816–4897

  • Vessey J (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571. https://doi.org/10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  • Vurukonda SSKP, Davide G, Emilio S (2018) Plant growth promoting and biocontrol activity of streptomyces spp. as endophytes. Int J Mol Sci 19:952. https://doi.org/10.3390/ijms19040952

    Article  CAS  PubMed Central  Google Scholar 

  • Wang J, Suzuki N, Nishida Y, Kataoka T (1993) Analysis of the function of the 70-kilodalton cyclase-associated protein (CAP) by using mutants of yeast adenylyl cyclase defective in CAP binding. Mol Cell Biol 13(7):4087–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Yang W, Wang C, Gu C, Niu D, Liu H, Wang Y, Guo J (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7:e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whips JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  Google Scholar 

  • Yamanaka K, Oikawa H, Ogawa HO, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T, Ueda K (2005) Desferrioxamine E produced by streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151(9):2899–2905. https://doi.org/10.1099/mic.0.28139-0

    Article  CAS  PubMed  Google Scholar 

  • Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamanian JL, Lijun X, Foo LC, Nouri N, Zhou L, Giffard RG, Ben Barres A (2012) Genomic analysis of reactive. Astrogliosis J Neurosci 32(18):6391–6410

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakure, S., Bhosale, S. (2019). Actinobacteria for Biotic Stress Management. In: Sayyed, R. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6986-5_14

Download citation

Publish with us

Policies and ethics