Skip to main content

Solid-State NMR Characterization of Acid Properties of Zeolites and Solid Acid Catalysts

  • Chapter
  • First Online:
Solid-State NMR in Zeolite Catalysis

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 103))

Abstract

This chapter introduces the application of solid-state NMR to investigate the acid features of solid acid catalysts, which have been widely used in advanced petrochemical processes because of their environmental friendliness, high product selectivity, and easy product separation. The acidic features of solid acids including acid type, acid concentration, acid distribution, acid strength, and the spatial interaction of acid sites are essential factors in dictating their reactivity and selectivity. Solid-state NMR is presented to be a powerful tool for the characterization of the surface acidic properties of solid acid catalysts including zeolites, oxides and heteropolyacids etc. The acid strength of solid acids can be quantitatively measured from the chemical shifts of adsorbed probe molecules such as pyridine, acetone, trialkylphosphine oxides, and trimethylphosphine. The spatial proximity and synergetic effect of various acid sites on solid acid catalysts can be ascertained by either double-resonance or two-dimensional (2D) double-quantum magic-angle spinning (DQ MAS) NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng Y-K, Ye L, Qu J, Zhang L, Fu Y, Teixeira IF, McPherson IJ, He H, Tsang SCE (2016) Trimethylphosphine-assisted surface fingerprinting of metal oxide nanoparticle by 31P solid-state NMR: a zinc oxide case study. J Am Chem Soc 138(7):2225–2234. https://doi.org/10.1021/jacs.5b12080

    Article  CAS  PubMed  Google Scholar 

  2. Hunger M (1997) Br⊘nsted acid sites in zeolites characterized by multinuclear solid-state nmr spectroscopy. Catal Rev 39(4):345–393. https://doi.org/10.1080/01614949708007100

    Article  CAS  Google Scholar 

  3. Zheng AM, Li SH, Liu SB, Deng F (2016) Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Acc Chem Res 49(4):655–663. https://doi.org/10.1021/acs.accounts.6b00007

    Article  CAS  PubMed  Google Scholar 

  4. Hadjiivanov KI, Vayssilov GN (2002) Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. In: Gates BC, Knozinger H (eds) Advances in catalysis 47:307–511. https://doi.org/10.1016/s0360-0564(02)47008-3

    Google Scholar 

  5. Song XM, Sayari A (1996) Sulfated zirconia-based strong solid-acid catalysts: recent progress. Catal Rev Sci Eng 38(3):329–412. https://doi.org/10.1080/01614949608006462

    Article  CAS  Google Scholar 

  6. Hunger M (1996) Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites. Solid State Nucl Magn Reson 6(1):1–29. https://doi.org/10.1016/0926-2040(95)01201-x

    Article  CAS  PubMed  Google Scholar 

  7. Hunger M (1997) Bronsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy. Catal Rev Sci Eng 39(4):345–393. https://doi.org/10.1080/01614949708007100

    Article  CAS  Google Scholar 

  8. Li S, Zheng A, Su Y, Zhang H, Chen L, Yang J, Ye C, Deng F (2007) Brønsted/lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J Am Chem Soc 129(36):11161–11171. https://doi.org/10.1021/ja072767y

    Article  CAS  PubMed  Google Scholar 

  9. Li SH, Huang SJ, Shen WL, Zhang HL, Fang HJ, Zheng AM, Liu SB, Deng F (2008) Probing the spatial proximities among acid sites in dealuminated H-Y zeolite by solid-state NMR spectroscopy. J Phys Chem C 112(37):14486–14494. https://doi.org/10.1021/jp803494n

    Article  CAS  Google Scholar 

  10. Yu ZW, Zheng AM, Wang QA, Chen L, Xu J, Amoureux JP, Deng F (2010) Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced Al-27 DQ-MAS NMR spectroscopy at high field. Angew Chem Int Ed 49(46):8657–8661. https://doi.org/10.1002/anie.201004007

    Article  CAS  Google Scholar 

  11. Freude D, Hunger M, Pfeifer H, Schwieger W (1986) H-1 MAS NMR-Studies On The Acidity Of Zeolites. Chem Phys Lett 128(1):62–66. https://doi.org/10.1016/0009-2614(86)80146-4

    Article  CAS  Google Scholar 

  12. Lohse U, Loffler E, Hunger M, Stockner J, Patzelova V (1987) Hydroxyl-groups of the nonframework aluminum species in dealuminated Y-zeolites. Zeolites 7(1):11–13. https://doi.org/10.1016/0144-2449(87)90111-4

    Article  CAS  Google Scholar 

  13. Derouane EG, Védrine JC, Pinto RR, Borges PM, Costa L, Lemos MANDA, Lemos F, Ribeiro FR (2013) The acidity of zeolites: concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity. Catal Rev 55(4):454–515. https://doi.org/10.1080/01614940.2013.822266

    Article  CAS  Google Scholar 

  14. Jiang Y, Huang J, Dai W, Hunger M (2011) Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nucl Magn Reson 39(3–4):116–141. https://doi.org/10.1016/j.ssnmr.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  15. Grey CP, Vega AJ (1995) Determination of the quadrupole coupling-constant of the invisible aluminum spins in zeolite HY with H-1/AL-27 TRAPDOR NMR. J Am Chem Soc 117(31):8232–8242. https://doi.org/10.1021/ja00136a022

    Article  CAS  Google Scholar 

  16. Chen K, Abdolrhamani M, Sheets E, Freeman J, Ward G, White JL (2017) Direct detection of multiple acidic proton sites in zeolite HZSM-5. J Am Chem Soc 139(51):18698–18704. https://doi.org/10.1021/jacs.7b10940

    Article  CAS  PubMed  Google Scholar 

  17. Sauer J (1989) Acidic sites in heterogeneous catalysis: structure, properties and activity. J Mol Catal 54(3):312–323. https://doi.org/10.1016/0304-5102(89)80149-X

    Article  CAS  Google Scholar 

  18. Ratcliffe CI, Ripmeester JA, Tse JS (1985) NMR chemical shifts of dilute 1H in inorganic solids. Chem Phys Lett 120(4):427–432. https://doi.org/10.1016/0009-2614(85)85634-7

    Article  CAS  Google Scholar 

  19. Batamack P, Doremieux-Morin C, Fraissard J, Freude D (1991) Broad-line and high-resolution NMR studies concerning the hydroxonium ion in HZSM-5 zeolites. J Phys Chem 95(9):3790–3796. https://doi.org/10.1021/j100162a064

    Article  CAS  Google Scholar 

  20. Tanabe K (1985) Surface and catalytic properties of ZrO2. Mater Chem Phys 13(3–4):347–364

    Google Scholar 

  21. Bartona DG, Soledb SL, Meitznerc GD, Fuentesd GA, Iglesia E (1999) Structural and catalytic characterization of solid acids based on zirconia modified by Tungsten Oxide. J Catal 181(1):57–72

    Article  Google Scholar 

  22. Iglesia E, Barton DG, Soled SL, Miseo S, Baumgartner JE, Gates WE, Fuentes GA, Meitzner GD (1996) Selective isomerization of alkanes on supported tungsten oxide acids. Stud Surf Sci Catal 101:533–542

    Article  CAS  Google Scholar 

  23. Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205–216

    Article  CAS  Google Scholar 

  24. Xu J, Zheng AM, Yang J, Su YC, Wang JQ, Zeng DL, Zhang MJ, Ye CH, Deng F (2006) Acidity of mesoporous MoOx/ZrO2 and WOx/ZrO2 materials: a combined solid-state NMR and theoretical calculation study. J Phys Chem B 110(22):10662–10671. https://doi.org/10.1021/jp0614087

    Article  CAS  PubMed  Google Scholar 

  25. Tanabe K, Hölderich WF (1999) Industrial application of solid acid–base catalysts. Appl Catal A 181(2):399–434. https://doi.org/10.1016/S0926-860X(98)00397-4

    Article  CAS  Google Scholar 

  26. Yang J, Zheng AM, Zhang MJ, Luo Q, Yue Y, Ye CH, Lu X, Deng F (2005) Bronsted and lewis acidity of the BF3/gamma-Al2O3 alkylation catalyst as revealed by solid-state NMR spectroscopy and DFT quantum chemical calculations. J Phys Chem B 109(27):13124–13131. https://doi.org/10.1021/jp051268l

    Article  CAS  PubMed  Google Scholar 

  27. Taarning E, Osmundsen CM, Yang X, Voss B, Andersen SI, Christensen CH (2011) Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ Sci 4(3):793–804. https://doi.org/10.1039/C004518G

    Article  CAS  Google Scholar 

  28. Roman-Leskkov Y, Moliner M, Labinger JA, Davis DM (2010) Mechanism of glucose isomerization using a solid lewis acid catalyst in water. Angewandte Chem Int Ed 49(47):8954–8957. https://doi.org/10.1002/anie.201004689

    Article  Google Scholar 

  29. Boronat M, Concepcion P, Corma A, Renz M, Valencia S (2005) Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J Catal 234(1):111–118. https://doi.org/10.1016/j.jcat.2005.05.023

    Article  CAS  Google Scholar 

  30. Harris JW, Cordon MJ, Di Iorio JR, Vega-Vila JC, Ribeiro FH, Gounder R (2016) Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization. J Catal 335(Supplement C):141–154. https://doi.org/10.1016/j.jcat.2015.12.024

    Article  CAS  Google Scholar 

  31. Bermejo-Deval R, Orazov M, Gounder R, Hwang SJ, Davis ME (2014) Active sites in Sn-Beta for glucose isomerization to fructose and epimerization to mannose. ACS Catal 4(7):2288–2297. https://doi.org/10.1021/cs500466j

    Article  CAS  Google Scholar 

  32. Hwang S-J, Gounder R, Bhawe Y, Orazov M, Bermejo-Deval R, Davis ME (2015) Solid state NMR characterization of Sn-Beta zeolites that catalyze glucose isomerization and epimerization. Top Catal 58(7):435–440. https://doi.org/10.1007/s11244-015-0388-7

    Article  CAS  Google Scholar 

  33. Qi G, Wang Q, Xu J, Wu Q, Wang C, Zhao X, Meng X, Xiao F, Deng F (2018) Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy. Commun Chem 1(1):22. https://doi.org/10.1038/s42004-018-0023-1

    Article  Google Scholar 

  34. Blunden SJ, Hill R (1990) An investigation of the base hydrolysis of methyl- and butyl-tin trichloride in aqueous solution by 1H and 119Sn NMR spectroscopy. Inorg Chim Acta 177(2):219–223. https://doi.org/10.1016/S0020-1693(00)85979-4

    Article  CAS  Google Scholar 

  35. Blunden SJ, Smith PJ, Gillies DG (1982) An investigation of the hydrolysis products of monoalkyltin trichlorides by 119mSn Mössbauer, and 1H and 119Sn NMR spectroscopy. Inorg Chim Acta 60:105–109. https://doi.org/10.1016/S0020-1693(00)91158-7

    Article  CAS  Google Scholar 

  36. Josephson TR, Jenness GR, Vlachos DG, Caratzoulas S (2017) Distribution of open sites in Sn-Beta zeolite. Micropor Mesopor Mat 245:45–50. https://doi.org/10.1016/j.micromeso.2017.02.065

    Article  CAS  Google Scholar 

  37. Wolf P, Valla M, Núñez-Zarur F, Comas-Vives A, Rossini AJ, Firth C, Kallas H, Lesage A, Emsley L, Copéret C, Hermans I (2016) Correlating synthetic methods, morphology, atomic-level structure, and catalytic activity of Sn-β catalysts. ACS Catal 6(7):4047–4063. https://doi.org/10.1021/acscatal.6b00114

    Article  CAS  Google Scholar 

  38. Lunsford JH, Rothwell WP, Shen W (1985) Acid sites in zeolite Y: a solid-state NMR and infrared study using trimethylphosphine as a probe molecule. J Am Chem Soc 107(6):1540–1547. https://doi.org/10.1021/ja00292a015

    Article  CAS  Google Scholar 

  39. Haw JF, Zhang JH, Shimizu K, Venkatraman TN, Luigi DP, Song WG, Barich DH, Nicholas JB (2000) NMR and theoretical study of acidity probes on sulfated zirconia catalysts. J Am Chem Soc 122(50):12561–12570. https://doi.org/10.1021/ja0027721

    Article  CAS  Google Scholar 

  40. Zhang WP, Han XW, Liu XM, Bao XH (2003) Characterization of the acid sites in dealuminated nanosized HZSM-5 zeolite with the probe molecule trimethylphosphine. J Mol Catal A Chem 194(1–2):107–113. https://doi.org/10.1016/S1381-1169(02)00466-1/S1381-1169(02)00466-1

    Article  CAS  Google Scholar 

  41. Luo Q, Deng F, Yuan ZY, Yang J, Zhang MJ, Yue Y, Ye CH (2003) Using trimethylphosphine as a probe molecule to study the acid states in Al-MCM-41 materials by solid-state NMR spectroscopy. J Phys Chem B 107(11):2435–2442. https://doi.org/10.1021/jp0213093

    Article  CAS  Google Scholar 

  42. Ma D, Han XW, Xie SJ, Bao XH, Hu HB, Au-Yeung SCF (2002) An investigation of the roles of surface aluminum and acid sites in the zeolite MCM-22. Chem A Eur J 8(1):162–170. https://doi.org/10.1002/1521-3765(20020104)8:1%3c162:aid-chem162%3e3.0.co;2-4

    Article  CAS  Google Scholar 

  43. Biaglow AI, Gorte RJ, Kokotailo GT, White D (1994) A probe of bronsted site acidity in zeolites—C-13 chemical-shift of acetone. J Catal 148(2):779–786. https://doi.org/10.1006/jcat.1994.1264

    Article  CAS  Google Scholar 

  44. Xu T, Munson EJ, Haw JF (1994) Toward a systematic chemistry of organic-reactions in zeolites—in-situ nmr-studies of ketones. J Am Chem Soc 116(5):1962–1972. https://doi.org/10.1021/ja00084a041

    Article  CAS  Google Scholar 

  45. Kao HM, Yu CY, Yeh MC (2002) Detection of the inhomogeneity of Bronsted acidity in H-mordenite and H-P zeolites: a comparative NMR study using trimethylphosphine and trimethylphosphine oxide as P-31 NMR probes. Microporous Mesoporous Mater 53(1–3):1–12. https://doi.org/10.1016/S1387-1811(02)00279-2

    Article  CAS  Google Scholar 

  46. Rakiewicz EF, Peters AW, Wormsbecher F, Sutovich KJ, Mueller KT (1998) Characterization of acid sites in zeolitic and other inorganic systems using solid-state P-31 NMR of the probe molecule trimethylphosphine oxide. J Phys Chem B 102(16):2890–2896. https://doi.org/10.1021/jp980808u

    Article  CAS  Google Scholar 

  47. Freude D, Hunger M, Pfeifer H (1982) Study of Brønsted acidity of zeolites using high-resolution proton magnetic resonance with magic-angle spinning. Chem Phys Lett 91(4):307–310. https://doi.org/10.1016/0009-2614(82)80162-0

    Article  CAS  Google Scholar 

  48. Simperler A, Bell RG, Foster MD, Gray AE, Lewis DW, Anderson MW (2004) Probing the acid strength of Bronsted acidic zeolites with acetonitrile: an atomistic and quantum chemical study. J Phys Chem B 108(22):7152–7161. https://doi.org/10.1021/jp035673t

    Article  CAS  Google Scholar 

  49. DeCanio SJ, Sohn JR, Fritz PO, Lunsford JH (1986) Acid catalysis by dealuminated zeolite-Y: I. Methanol dehydration and cumene dealkylation. J Catal 101(1):132–141. https://doi.org/10.1016/0021-9517(86)90236-8

    Article  CAS  Google Scholar 

  50. Sohn JR, DeCanio SJ, Fritz PO, Lunsford JH (1986) Acid catalysis by dealuminated zeolite Y. 2. The roles of aluminum. J Phys Chem 90(20):4847–4851. https://doi.org/10.1021/j100411a026

    Article  CAS  Google Scholar 

  51. Misono M (2001) Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state. Chem Commun 13:1141–1152. https://doi.org/10.1039/b102573m

    Article  CAS  Google Scholar 

  52. Howell RC, Perez FG, Jain S, Horrocks WD, Rheingold AL, Francesconi LC (2001) A new type of heteropolyoxometalates formed from lacunary polyoxotungstate ions and europium or yttrium cations. Angew Chem Int Ed 40 (21):4031. https://doi.org/10.1002/1521-3773(20011105)40:21%3c4031::aid-anie4031%3e3.0.co;2-8

  53. Yang J, Janik MJ, Ma D, Zheng A, Zhang M, Neurock M, Davis RJ, Ye C, Deng F (2005) Location, acid strength, and mobility of the acidic protons in Keggin 12–H3PW12O40: a combined solid-state NMR spectroscopy and DFT quantum chemical calculation study. J Am Chem Soc 127(51):18274–18280. https://doi.org/10.1021/ja055925z

    Article  CAS  PubMed  Google Scholar 

  54. Chu YY, Yu ZW, Zheng AM, Fang HJ, Zhang HL, Huang SJ, Liu SB, Deng F (2011) Acidic strengths of Bronsted and lewis acid sites in solid acids scaled by P-31 NMR chemical shifts of adsorbed trimethylphosphine. J Phys Chem C 115(15):7660–7667. https://doi.org/10.1021/jp200811b

    Article  CAS  Google Scholar 

  55. Feng ND, Zheng AM, Huang SJ, Zhang HL, Yu NY, Yang CY, Liu SB, Deng F (2010) Combined solid-state NMR and theoretical calculation studies of Bronsted acid properties in anhydrous 12-molybdophosphoric acid. J Phys Chem C 114(36):15464–15472. https://doi.org/10.1021/jp105683y

    Article  CAS  Google Scholar 

  56. Zhao RR, Zhao ZC, Li SK, Zhang WP (2017) Insights into the correlation of aluminum distribution and Bronsted acidity in H-Beta zeolites from solid-state NMR spectroscopy and DFT calculations. J Phys Chem Lett 8(10):2323–2327. https://doi.org/10.1021/acs.jpclett.7b00711

    Article  CAS  PubMed  Google Scholar 

  57. Qi G, Wang Q, Xu J, Trébosc J, Lafon O, Wang C, Amoureux J-P, Deng F (2016) Synergic effect of active sites in zinc-modified ZSM-5 zeolites as revealed by high-field solid-state NMR spectroscopy. Angew Chem Int Ed 55(51):15826–15830. https://doi.org/10.1002/anie.201608322

    Article  CAS  Google Scholar 

  58. Hunger M, Freude D, Fröhlich T, Pfeifer H, Schwieger W (1987) 1H-MAS n.m.r. studies of ZSM-5 type zeolites. Zeolites 7 (2):108–110. http://dx.doi.org/10.1016/0144-2449(87)90068-6

    Article  CAS  Google Scholar 

  59. Zheng A, Zhang H, Chen L, Yue Y, Ye C, Deng F (2007) Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids. J Phys Chem B 111(12):3085–3089. https://doi.org/10.1021/jp067340c

    Article  CAS  PubMed  Google Scholar 

  60. Fang H, Zheng A, Chu Y, Deng F (2010) 13C chemical shift of adsorbed acetone for measuring the acid strength of solid acids: a theoretical calculation study. J Phys Chem C 114(29):12711–12718. https://doi.org/10.1021/jp1044749

    Article  CAS  Google Scholar 

  61. Zheng A, Huang S-J, Chen W-H, Wu P-H, Zhang H, Lee H-K, de Menorval L-C, Deng F, Liu S-B (2008) 31P chemical shift of adsorbed trialkylphosphine oxides for acidity characterization of solid acids catalysts. J Phys Chem A 112(32):7349–7356. https://doi.org/10.1021/jp8027319

    Article  CAS  PubMed  Google Scholar 

  62. Zheng A, Huang S-J, Liu S-B, Deng F (2011) Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Phys Chem Chem Phys 13(33):14889–14901. https://doi.org/10.1039/c1cp20417c

    Article  CAS  PubMed  Google Scholar 

  63. Zhao Q, Chen WH, Huang SJ, Wu YC, Lee HK, Liu SB (2002) Discernment and quantification of internal and external acid sites on zeolites. J Phys Chem B 106(17):4462–4469. https://doi.org/10.1021/jp015574k

    Article  CAS  Google Scholar 

  64. Zheng AM, Chen L, Yang J, Zhang MJ, Su YC, Yue Y, Ye CH, Deng F (2005) Combined DFT theoretical calculation and solid-state NMR studies of Al substitution and acid sites in zeolite MCM-22. J Phys Chem B 109(51):24273–24279. https://doi.org/10.1021/jp0527249

    Article  CAS  PubMed  Google Scholar 

  65. Zhang WP, Ma D, Liu XC, Liu XM, Bao XH (1999) Perfluorotributylamine as a probe molecule for distinguishing internal and external acidic sites in zeolites by high-resolution H-1 MAS NMR spectroscopy. Chem Commun 12:1091–1092. https://doi.org/10.1039/a900396g

    Article  Google Scholar 

  66. Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568(1–2):28–40. https://doi.org/10.1016/j.aca.2005.10.069

    Article  CAS  PubMed  Google Scholar 

  67. Jang M, Shin EW, Park JK, Choi SI (2003) Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides. Environ Sci Technol 37(21):5062–5070. https://doi.org/10.1021/es0343712

    Article  CAS  PubMed  Google Scholar 

  68. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  CAS  Google Scholar 

  69. Peng LM, Chupas PJ, Grey CP (2004) Measuring Bronsted acid densites in zeolite HY with diphosphine molecules and solid state NMR spectroscopy. J Am Chem Soc 126(39):12254–12255. https://doi.org/10.1021/ja0467519

    Article  CAS  PubMed  Google Scholar 

  70. Brown SP, Spiess HW (2001) Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem Rev 101(12):4125–4155. https://doi.org/10.1021/cr990132e

    Article  CAS  PubMed  Google Scholar 

  71. Yu Z, Li S, Wang Q, Zheng A, Jun X, Chen L, Deng F (2011) Brønsted/lewis acid synergy in H-ZSM-5 and H–MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy. J Phys Chem C 115(45):22320–22327. https://doi.org/10.1021/jp203923z

    Article  CAS  Google Scholar 

  72. Yu ZW, Wang Q, Chen L, Deng F (2012) Bronsted/lewis acid sites synergy in H-MCM-22 zeolite studied by H-1 and Al-27 DQ-MAS NMR spectroscopy. Chin J Catal 33(1):129–139. https://doi.org/10.1016/s1872-2067(10)60287-2

    Article  CAS  Google Scholar 

  73. Wang Q, Hu B, Lafon O, Trebosc J, Deng F, Amoureux JP (2009) Double-quantum homonuclear NMR correlation spectroscopy of quadrupolar nuclei subjected to magic-angle spinning and high magnetic field. J Magn Reson 200(2):251–260. https://doi.org/10.1016/j.jmr.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  74. Peng L, Grey CP (2008) Diphosphine probe molecules and solid-state NMR investigations of proximity between acidic sites in zeolite HY. Microporous Mesoporous Mater 116(1–3):277–283. https://doi.org/10.1016/j.micromeso.2008.04.014

    Article  CAS  Google Scholar 

  75. Shi JL (2013) On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem Rev 113(3):2139–2181. https://doi.org/10.1021/cr3002752

    Article  CAS  PubMed  Google Scholar 

  76. Iglesia E, Barton DG, Biscardi JA, Gines MJL, Soled SL (1997) Bifunctional pathways in catalysis by solid acids and bases. Catal Today 38(3):339–360. https://doi.org/10.1016/s0920-5861(97)81503-7

    Article  Google Scholar 

  77. Meriaudeau P, Naccache C (1997) Dehydrocyclization of alkanes over zeolite-supported metal catalysts: monofunctional or bifunctional route. Catal Rev 39(1–2):5–48. https://doi.org/10.1080/01614949708006467

    Article  CAS  Google Scholar 

  78. Meriaudeau P, Naccache C (1990) The role of Ga2O3 and proton acidity on the dehydrogenating activity of GA2O3-hzsm-5 catalysts—evidence of a bifunctional mechanism. J Mol Catal 59(3):L31–L36. https://doi.org/10.1016/0304-5102(90)85100-v

    Article  CAS  Google Scholar 

  79. Stepanov AG, Arzumanov SS, Gabrienko AA, Parmon VN, Ivanova II, Freude D (2008) Significant Influence of Zn on activation of the C–H bonds of small alkanes by Brønsted acid sites of zeolite. ChemPhysChem 9(17):2559–2563. https://doi.org/10.1002/cphc.200800569

    Article  CAS  PubMed  Google Scholar 

  80. Ono Y (1992) Transformation of lower alkanes into aromatic-hydrocarbons over ZSM-5 zeolites. Catal Rev 34(3):179–226. https://doi.org/10.1080/01614949208020306

    Article  CAS  Google Scholar 

  81. Siegel R, Nakashima TT, Wasylishen RE (2004) Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses. Chem Phys Lett 388(4–6):441–445. https://doi.org/10.1016/j.cplett.2004.03.047

    Article  CAS  Google Scholar 

  82. Freeman D, Wells RPK, Hutchings GJ (2001) Methanol to hydrocarbons: enhanced aromatic formation using a composite GaO-H-ZSM-5 catalyst. Chem Commun 18:1754–1755. https://doi.org/10.1039/B104844A

    Article  Google Scholar 

  83. Freeman D, Wells RPK, Hutchings GJ (2002) Conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts. J Catal 205(2):358–365. https://doi.org/10.1006/jcat.2001.3446

    Article  CAS  Google Scholar 

  84. Gao P, Xu J, Qi G, Wang C, Wang Q, Zhao Y, Zhang Y, Feng N, Zhao X, Li J, Deng F (2018) A mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: understanding the dehydrogenation process. ACS Catal 8(10):9809–9820. https://doi.org/10.1021/acscatal.8b03076

    Article  CAS  Google Scholar 

  85. Gao P, Wang Q, Xu J, Qi GD, Wang C, Zhou X, Zhou XL, Feng ND, Liu XL, Deng F (2018) Bronsted/lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, as studied by solid-state NMR spectroscopy. ACS Catal 8(1):69–74. https://doi.org/10.1021/acscatal.7b03211

    Article  CAS  Google Scholar 

  86. Massiot D, Farnan I, Gautier N, Trumeau D, Trokiner A, Coutures JP (1995) 71 Ga and 69 Ga nuclear magnetic resonance study of β-Ga2O3: resolution of four- and six-fold coordinated Ga sites in static conditions. Solid State Nucl Magn Reson 4(4):241–248. https://doi.org/10.1016/0926-2040(95)00002-8

    Article  CAS  PubMed  Google Scholar 

  87. Occelli ML, Schwering G, Fild C, Eckert H, Auroux A, Iyer PS (2000) Galliosilicate molecular sieves with the faujasite structure. Microporous Mesoporous Mater 34(1):15–22. https://doi.org/10.1016/S1387-1811(99)00151-1

    Article  CAS  Google Scholar 

  88. Garcı́a-Sánchez M, Magusin PCMM, Hensen EJM, Thüne PC, Rozanska X, van Santen RA (2003) Characterization of Ga/HZSM-5 and Ga/HMOR synthesized by chemical vapor deposition of trimethylgallium. J Catal 219(2):352–361. https://doi.org/10.1016/S0021-9517(03)00231-8

    Article  CAS  Google Scholar 

  89. Lopez-Sanchez JA, Conte M, Landon P, Zhou W, Bartley JK, Taylor SH, Carley AF, Kiely CJ, Khalid K, Hutchings GJ (2012) Reactivity of Ga2O3 clusters on zeolite ZSM-5 for the conversion of methanol to aromatics. Catal Lett 142(9):1049–1056. https://doi.org/10.1007/s10562-012-0869-2

    Article  CAS  Google Scholar 

  90. Lai P-C, Chen C-H, Hsu H-Y, Lee C-H, Lin Y-C (2016) Methanol aromatization over Ga-doped desilicated HZSM-5. Rsc Adv 6(71):67361–67371. https://doi.org/10.1039/C6RA16052B

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Wang, Q., Li, S., Deng, F. (2019). Solid-State NMR Characterization of Acid Properties of Zeolites and Solid Acid Catalysts. In: Solid-State NMR in Zeolite Catalysis. Lecture Notes in Chemistry, vol 103. Springer, Singapore. https://doi.org/10.1007/978-981-13-6967-4_5

Download citation

Publish with us

Policies and ethics