Skip to main content

Solid-State NMR Studies of Zeolites and Zeotype Materials Synthesis

  • Chapter
  • First Online:
Book cover Solid-State NMR in Zeolite Catalysis

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 103))

  • 1003 Accesses

Abstract

Understanding of synthesis mechanism is a prerequisite for the rational design of materials with desired structure and property. NMR is a powerful and unique tool that can probe the local or atomic environments of solid or liquid phase during the synthesis. The study of the crystallization of zeolites and zeotype materials with NMR spectroscopy is dealt with in this chapter. Synthesis routes and procedures as well as self-assembling mechanisms for zeolites are briefly introduced. 1D NMR spectroscopy allows to perform the structural analysis of the species leading to the construction of the zeolite framework, while the 2D NMR reveals the connectivity and correlations between the same or different species during the synthesis. Ex situ and in situ NMR approaches are presented, which allow to obtain detailed information on the chemical reactions and kinetics involved in synthesis process. The crystallization of aluminosilicates and aluminophosphates are discussed to show how and to what extent the molecular-level insights can be obtained by using multi-nuclear NMR and different NMR protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrer RM (1948) 33. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. J Chem Soc (Resumed) (0):127–132. https://doi.org/10.1039/jr9480000127

  2. Kerr GT (1963) Zeolite ZK-5: a new molecular sieve. Science 140(3574):1412–1412. https://doi.org/10.1126/science.140.3574.1412

    Article  CAS  PubMed  Google Scholar 

  3. Baerlocher C, McCusker LB, Olson DH (eds) (2007) Atlas of zeolite structure types, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  4. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843. https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  5. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350):548–552. https://doi.org/10.1126/science.279.5350.548

    Article  CAS  PubMed  Google Scholar 

  6. Walton RI, O’Hare D (2000) Watching solids crystallise using powder diffraction. Chem Commun 23:2283–2291. https://doi.org/10.1039/B007795J

    Article  Google Scholar 

  7. Francis RJ, O’Hare D (1998) The kinetics and mechanisms of the crystallisation of microporous materials. J Chem Soc, Dalton Trans 19:3133–3148. https://doi.org/10.1039/A802330A

    Article  Google Scholar 

  8. Vistad ØB, Akporiaye DE, Taulelle F, Lillerud KP (2003) In situ nmr of sapo-34 crystallization. Chem Mater 15(8):1639–1649. https://doi.org/10.1021/cm021317w

    Article  CAS  Google Scholar 

  9. Taulelle F, Haouas M, Gerardin C, Estournes C, Loiseau T, Ferey G (1999) NMR of microporous compounds: from in situ reactions to solid paving. Colloids Surf A 158(1–2):299–311. https://doi.org/10.1016/S0927-7757(99)00200-9

    Article  CAS  Google Scholar 

  10. Serre C, Lorentz C, Taulelle F, Férey G (2003) Hydrothermal synthesis of nanoporous metalofluorophosphates. 2. In situ and ex situ 19F and 31P NMR of nano- and mesostructured titanium phosphates crystallogenesis. Chem Mater 15 (12):2328–2337. https://doi.org/10.1021/cm021347z

    Article  CAS  Google Scholar 

  11. Huang Y, Machado D, Kirby CW (2004) A study of the formation of molecular sieve SAPO-44. J Phys Chem B 108(6):1855–1865. https://doi.org/10.1021/jp0308256

    Article  CAS  Google Scholar 

  12. Huang Y, Richer R, Kirby CW (2003) Characterization of the gel phases of AlPO4-11 molecular sieve synthesis by solid-state NMR. J Phys Chem B 107(6):1326–1337. https://doi.org/10.1021/jp021878a

    Article  CAS  Google Scholar 

  13. Huang Y, Demko BA, Kirby CW (2003) Investigation of the evolution of intermediate phases of AlPO4-18 molecular sieve synthesis. Chem Mater 15(12):2437–2444. https://doi.org/10.1021/cm021728c

    Article  CAS  Google Scholar 

  14. Twu J, Dutta PK, Kresge CT (1991) Raman spectroscopic studies of the synthesis of faujasitic zeolites: comparison of two silica sources. Zeolites 11(7):672–679. https://doi.org/10.1016/S0144-2449(05)80170-8

    Article  CAS  Google Scholar 

  15. Grandjean D, Beale AM, Petukhov AV, Weckhuysen BM (2005) Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions. J Am Chem Soc 127(41):14454–14465. https://doi.org/10.1021/ja054014m

    Article  CAS  PubMed  Google Scholar 

  16. Walton RI, Smith RI, O’Hare D (2001) Following the hydrothermal crystallisation of zeolites using time-resolved in situ powder neutron diffraction. Micropor Mesopor Mat 48(1–3):79–88. https://doi.org/10.1016/S1387-1811(01)00333-X

    Article  CAS  Google Scholar 

  17. Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103(3):663–702. https://doi.org/10.1021/cr020060i

    Article  CAS  PubMed  Google Scholar 

  18. Milton RM (1959). US Patent 2,882,244

    Google Scholar 

  19. Wadlinger RL Kerr GT, Rosinski EJ (1967). US Patent 3,308,069

    Google Scholar 

  20. Argauer RJ Landolt GR (1972). US Patent 3,702,886

    Google Scholar 

  21. Flanigen EM, Patton RL, Wilson ST (1988) Studies in surface science and catalysis 37:13

    Google Scholar 

  22. Grand J, Awala H, Mintova S (2016) Mechanism of zeolites crystal growth: new findings and open questions. CrystEngComm 18(5):650–664. https://doi.org/10.1039/C5CE02286J

    Article  CAS  Google Scholar 

  23. Kerr GT (1966) Chemistry of crystalline aluminosilicates. I. Factors affecting the formation of zeolite A. J Phys Chem 70(4):1047–1050. https://doi.org/10.1021/j100876a015

    Article  CAS  Google Scholar 

  24. Ciric J (1968) Kinetics of zeolite A crystallization. J Colloid Interf Sci 28(2):315–324. https://doi.org/10.1016/0021-9797(68)90135-5

    Article  CAS  Google Scholar 

  25. Breck DW (1964) Crystalline molecular sieves. J Chem Educ 41(12):678. https://doi.org/10.1021/ed041p678

    Article  CAS  Google Scholar 

  26. Derouane EG, Determmerie S, Gabelica Z, Blom N (1981) Synthesis and characterization of ZSM-5 type zeolites I. Physico-chemical properties of precursors and intermediates. Appl Catal 1(3):201–224. http://dx.doi.org/10.1016/0166-9834(81)80007-3

    Article  CAS  Google Scholar 

  27. Zhdanov SP (1974). In: Flanigen E M SLB, eds. (ed) Molecular sieve zeolites-I. American Chemical Society, Washington D C, pp 20–43

    Google Scholar 

  28. Smith JV (1988) Topochemistry of zeolites and related materials. 1. Topology and geometry. Chem Rev 88(1):149–182. https://doi.org/10.1021/cr00083a008

    Article  CAS  Google Scholar 

  29. McNicol BD, Pott GT, Loos KR, Mulder N (1973) Spectroscopic studies of zeolite synthesis: evidence for a solid-state mechanism. In: Molecular sieves, vol 121. Advances in Chemistry, vol 121. American Chemical Society, pp 152–161. doi:https://doi.org/10.1021/ba-1973-0121.ch012

    Google Scholar 

  30. Thomas JM, Bursill LA (1980) Amorphous Zeolites. Angew Chem Int Ed Engl 19(9):745–746. https://doi.org/10.1002/anie.198007451

    Article  Google Scholar 

  31. Epping JD, Chmelka BF (2006) Nucleation and growth of zeolites and inorganic mesoporous solids: molecular insights from magnetic resonance spectroscopy. Curr Opin Colloid In 11(2–3):81–117. https://doi.org/10.1016/j.cocis.2005.12.002

    Article  CAS  Google Scholar 

  32. Engelhardt G, Fahlke B, Mägi M, Lippmaa E (1983) High-resolution solid-state 29Si and 27Al n.m.r. of aluminosilicate intermediates in zeolite A synthesis. Zeolites 3(4):292–294. http://dx.doi.org/10.1016/0144-2449(83)90170-7

    Article  CAS  Google Scholar 

  33. Engelhardt G, Fahlke B, Mägi M, Lippmaa E (1985) High-resolution solid-state 29Si and 27Al n.m.r. of aluminosilicate intermediates in the synthesis of zeolite A. Part II. Zeolites 5 (1):49–52. http://dx.doi.org/10.1016/0144-2449(85)90012-0

    Article  CAS  Google Scholar 

  34. Barrer RM (1982) The hydrothermal chemistry of zeolites. Academic Press, London

    Google Scholar 

  35. Ogura M, Kawazu Y, Takahashi H, Okubo T (2003) Aluminosilicate species in the hydrogel phase formed during the aging process for the crystallization of FAU zeolite. Chem Mater 15(13):2661–2667. https://doi.org/10.1021/cm0218209

    Article  CAS  Google Scholar 

  36. Engelhardt G, Michel D (1987) High resolution solid-state NMR of silicates and zeolites. Wiley, Chichester

    Google Scholar 

  37. Ginter DM, Radke CJ, A.T. Bell (1989). Stud Surf Sci Catal 49A:161

    Google Scholar 

  38. Chang CD, Bell AT Studies on the mechanism of ZSM-5 formation. Catal Lett 8(5):305–316. https://doi.org/10.1007/bf00764192

    Article  CAS  Google Scholar 

  39. Burkett SL, Davis ME (1994) Mechanism of structure direction in the synthesis of Si-ZSM-5: an investigation by intermolecular 1H-29Si CP MAS NMR. J Phys Chem 98(17):4647–4653. https://doi.org/10.1021/j100068a027

    Article  CAS  Google Scholar 

  40. Lefebvre F, Sacerdote-Peronnet M, Mentzen BF (1993) C R Acad Sci Paris Ser 2 316:1549

    CAS  Google Scholar 

  41. Chao K-J, Lin J-C, Wang Y, Lee GH (1986) Single crystal structure refinement of TPA ZSM-5 zeolite. Zeolites 6(1):35–38. https://doi.org/10.1016/0144-2449(86)90009-6

    Article  CAS  Google Scholar 

  42. Gies H, Marker B (1992) The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites 12(1):42–49. https://doi.org/10.1016/0144-2449(92)90008-D

    Article  CAS  Google Scholar 

  43. Shi J, Anderson MW, Carr SW (1996) Direct observation of zeolite A synthesis by in situ solid-state NMR. Chem Mater 8(2):369–375. https://doi.org/10.1021/cm950028n

    Article  CAS  Google Scholar 

  44. Knight CTG (1990) Are zeolite secondary building units really red herrings? Zeolites 10(2):140–144. https://doi.org/10.1016/0144-2449(90)90036-Q

    Article  CAS  Google Scholar 

  45. Miladinović Z, Zakrzewska J, Kovačević B, Bačić G (2007) Monitoring of crystallization processes during synthesis of zeolite A by in situ 27Al NMR spectroscopy. Mater Chem Phys 104(2–3):384–389. https://doi.org/10.1016/j.matchemphys.2007.03.029

    Article  CAS  Google Scholar 

  46. Walton RI, Millange F, O’Hare D, Davies AT, Sankar G, Catlow CRA (2001) An in situ energy-dispersive x-ray diffraction study of the hydrothermal crystallization of zeolite A. 1. Influence of reaction conditions and transformation into sodalite. J Phys Chem B 105(1):83–90. https://doi.org/10.1021/jp002711p

    Article  CAS  Google Scholar 

  47. Ruren X (2007) Chemistry of zeolites and related porous materials: synthesis and structure. Wiley, Singapore (Asia) ©2007

    Google Scholar 

  48. Xu J, Chen L, Zeng D, Yang J, Zhang M, Ye C, Deng F (2007) Crystallization of AlPO4-5 aluminophosphate molecular sieve prepared in fluoride medium: a multinuclear solid-state NMR study. J Phys Chem B 111(25):7105–7113. https://doi.org/10.1021/jp0710133

    Article  CAS  Google Scholar 

  49. Hartmann P, Vogel J, Schnabel B (1994) The influence of short-range geometry on the 31P chemical-shift tensor in protonated. Phosphates. J Magn Reson, Ser A 111 (1):110–114. doi:http://dx.doi.org/10.1006/jmra.1994.1234

    Article  CAS  Google Scholar 

  50. Gougeon RD, Brouwer EB, Bodart PR, Delmotte L, Marichal C, Chézeau J-M, Harris RK (2001) Solid-State NMR Studies of the As-Synthesized AlPO4-5/TPAF Microporous Aluminophosphate. J Phys Chem B 105(49):12249–12256. https://doi.org/10.1021/jp0111214

    Article  CAS  Google Scholar 

  51. Xu J, Zhou D, Song X, Chen L, Yu J, Ye C, Deng F (2008) Crystallization of magnesium substituted aluminophosphate of type-36 as studied by solid-state NMR spectroscopy. Micropor Mesopor Mat 115(3):576–584. https://doi.org/10.1016/j.micromeso.2008.02.037

    Article  CAS  Google Scholar 

  52. Barrie PJ, Klinowski J (1989) Ordering in the framework of a magnesium aluminophosphate molecular sieve. J Phys Chem 93(16):5972–5974. https://doi.org/10.1021/j100353a007

    Article  CAS  Google Scholar 

  53. Deng F, Yue Y, Xiao T, Du Y, Ye C, An L, Wang H (1995) Substitution of aluminum in aluminophosphate molecular sieve by magnesium: a combined NMR and XRD study. J Phys Chem 99(16):6029–6035. https://doi.org/10.1021/j100016a045

    Article  CAS  Google Scholar 

  54. Kolodziejski W, Klinowski J (2002) Kinetics of cross-polarization in solid-state NMR: a guide for chemists. Chem Rev 102(3):613–628. https://doi.org/10.1021/cr000060n

    Article  CAS  PubMed  Google Scholar 

  55. Zhou D, Xu J, Yu J, Chen L, Deng F, Xu R (2006) Solid-state NMR spectroscopy of anionic framework aluminophosphates: a new method to determine the Al/P ratio. J Phys Chem B 110(5):2131–2137. https://doi.org/10.1021/jp056335q

    Article  CAS  Google Scholar 

  56. Hari Prasad Rao PR, Ueyama K, Matsukata M (1998) Crystallization of high silica BEA by dry gel conversion. Appl Catal A 166(1):97–103. https://doi.org/10.1016/S0926-860X(98)80005-7

    Article  CAS  Google Scholar 

  57. Rao PRHP, Matsukata M (1996) Dry-gel conversion technique for synthesis of zeolite BEA. Chem Commun 12:1441–1442. https://doi.org/10.1039/cc9960001441

    Article  Google Scholar 

  58. Arnold A, Hunger M, Weitkamp J (2004) Dry-gel synthesis of zeolites [Al]EU-1 and [Ga]EU-1. Micropor Mesopor Mat 67(2–3):205–213. https://doi.org/10.1016/j.micromeso.2003.10.010

    Article  CAS  Google Scholar 

  59. Zhang LR, Gavalas G (1999) Vapor-phase transport synthesis of ZnAPO-34 molecular sieve. Chem Commun 1:97–98. https://doi.org/10.1039/a809399g

    Article  Google Scholar 

  60. Zhang L, Bates J, Chen D, Nie H-Y, Huang Y (2011) Investigations of formation of molecular sieve SAPO-34. J Phys Chem C 115(45):22309–22319. https://doi.org/10.1021/jp208560t

    Article  CAS  Google Scholar 

  61. Chen B, Huang Y (2011) Formation of microporous material AlPO4-18 under dry-gel conversion conditions. Micropor Mesopor Mat 143(1):14–21. https://doi.org/10.1016/j.micromeso.2011.02.002

    Article  CAS  Google Scholar 

  62. Yan Z, Chen B, Huang Y (2009) A solid-state NMR study of the formation of molecular sieve SAPO-34. Solid State Nucl Mag 35(2):49–60. https://doi.org/10.1016/j.ssnmr.2008.12.006

    Article  CAS  Google Scholar 

  63. Chen B, Huang Y (2009) Dry gel conversion synthesis of SAPO- and CoAPO-based molecular sieves by using structurally related preformed AlPO precursors as the starting materials. Micropor Mesopor Mat 123(1–3):71–77. https://doi.org/10.1016/j.micromeso.2009.03.025

    Article  CAS  Google Scholar 

  64. MacIntosh AR, Huang Y (2013) Formation of and silicon incorporation in SAPO-5 synthesized via dry-gel conversion. Micropor Mesopor Mat 182:40–49. https://doi.org/10.1016/j.micromeso.2013.08.016

    Article  CAS  Google Scholar 

  65. Chen B, Huang Y (2006) 17O solid-state NMR spectroscopic studies of the involvement of water vapor in molecular sieve formation by dry-gel conversion. J Am Chem Soc 128(19):6437–6446. https://doi.org/10.1021/ja060286t

    Article  CAS  PubMed  Google Scholar 

  66. Vistad ØB, Akporiaye DE, Taulelle F, Lillerud KP (2003) Morpholine, an in situ 13C NMR pH meter for hydrothermal crystallogenesis of SAPO-34. Chem Mater 15(8):1650–1654. https://doi.org/10.1021/cm021318o

    Article  CAS  Google Scholar 

  67. Haouas M, Gerardin C, Taulelle F, Estournes C, Loiseau T, Férey GJ (1998) J Chim Phys Chim Biol 95:302

    Article  CAS  Google Scholar 

  68. Taulelle F (2001) Crystallogenesis of microporous metallophosphates. Curr Opin Solid State Mater Sci 5(5):397–405. https://doi.org/10.1016/S1359-0286(01)00037-7

    Article  CAS  Google Scholar 

  69. Zhao Z, Xu S, Hu MY, Bao X, Hu JZ (2016) In Situ high temperature high pressure MAS NMR study on the crystallization of AlPO4-5. J Phys Chem C 120(3):1701–1708. https://doi.org/10.1021/acs.jpcc.5b11294

    Article  CAS  Google Scholar 

  70. Yonker CR, Linehan JC (2005) The use of supercritical fluids as solvents for NMR spectroscopy. Prog Nucl Mag Res Sp 47(1–2):95–109. https://doi.org/10.1016/j.pnmrs.2005.08.002

    Article  CAS  Google Scholar 

  71. Turcu RVF, Hoyt DW, Rosso KM, Sears JA, Loring JS, Felmy AR, Hu JZ (2013) Rotor design for high pressure magic angle spinning nuclear magnetic resonance. J Magn Reson 226:64–69. https://doi.org/10.1016/j.jmr.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  72. Gerardin C, Haouas M, Lorentz C, Taulelle F (2000) NMR quantification in hydrothermal in situ synthesis. Magn Reson Chem 38(6):429–435. https://doi.org/10.1002/1097-458x(200006)38:6%3c429:aid-mrc671%3e3.0.co;2-s

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Wang, Q., Li, S., Deng, F. (2019). Solid-State NMR Studies of Zeolites and Zeotype Materials Synthesis. In: Solid-State NMR in Zeolite Catalysis. Lecture Notes in Chemistry, vol 103. Springer, Singapore. https://doi.org/10.1007/978-981-13-6967-4_2

Download citation

Publish with us

Policies and ethics