Skip to main content
  • 385 Accesses

Abstract

In the field of signal processing, line spectrum estimation is a classic research topic and is widely applied in the fields of communications, radar, sonar, seismology, etc. [1–14]. In these areas, the signal being processed can often be represented using a sinusoidal signal model. As a result, scholars around the world have attempted to solve the parameter estimation problem of sinusoidal signals, focusing primarily on issues of accuracy and computational complexity. The earliest paper regarding this subject can be traced back to an article published by Prony in 1795 [15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stoica P, et al. Modern signal spectrum analysis. Trans. RB Wu, Beijing: Publishing House of Electronics Industry; 2012. Electronic Industry Press; 2012.

    Google Scholar 

  2. Stoic P, Moses R. Spectral analysis of signals. New Jersey: Prentice-Hall; 2005.

    Google Scholar 

  3. Su ZG, Peng YN, Wu RB. Spectral estimation method based on singular covariance matrix. J Tsinghua Univ (Nat Sci). 2008;48(1):55–8.

    Google Scholar 

  4. Su ZG, Peng YN, Wu RB, et al. Spectral estimation of dynamic constraints based on sampling covariance matrix structure. J Electron. 2008;36(3):458–62.

    Google Scholar 

  5. Su ZG, Peng YN, Wu RB. Minimum norm singular capon spectral estimator. In: IEEE antennas and propagation society international symposium; 2007, p. 1140–3.

    Google Scholar 

  6. Su ZG, Zhang KX, Peng YN, et al. Rank-deficient APES filter for complex spectral estimation. In: IEEE radar conference; 2008, p. 1–6.

    Google Scholar 

  7. Viti V, Petrucci C, Barone P. Prony method in NMR spectroscopy. Int J Imaging Syst Technol. 1997;8(6):565–71.

    Article  Google Scholar 

  8. Leonowicz Z, Lobos T, Rezmer J. Advanced spectrum estimation methods for signal analysis in power electronics. IEEE Trans Industr Electron. 2003;50(3):514–9.

    Article  Google Scholar 

  9. Krim H, Viberg M. Two decades of array signal processing research: the parametric approach. IEEE Signal Process Mag. 1996;13(4):67–94.

    Article  Google Scholar 

  10. Borcea L, Papanicolaou G, Tsogka C. Theory and applications of time reversal and interferometric imaging. Inverse Prob. 2003;19(6):5139–64.

    Article  MathSciNet  MATH  Google Scholar 

  11. Maravic I, Kusuma J, Vetterli M. Low-sampling rate UWB channel characterization and synchronization. J Commun Netw. 2004;5(4):319–27.

    Article  Google Scholar 

  12. Carriere R, Moses RL. High resolution radar target modeling using a modified Prony estimator. IEEE Trans Antennas Propag. 1992;40(1):13–8.

    Article  Google Scholar 

  13. Munson DCJ, O’Brien JD, Jenkins W. A tomographic formulation of spotlight-mode synthetic aperture radar. Proc IEEE. 1983;71(8):917–25.

    Article  Google Scholar 

  14. Ausherman DA, Kozma A, Walker JL, et al. Developments in radar imaging. IEEE Trans Aerosp Electron Syst. 1984;20(4):363–400.

    Article  Google Scholar 

  15. De Prony BGR. Essai experimental et analytique: sur les lois de la dilatabilite de fluides elastique et sur celles de la force expansive de la vapeur de l’alkool, a differentes temperatures. Journal de lecole polytechnique. 1795;1(22):24–76.

    Google Scholar 

  16. Tufts DW, Melissinos C. Simple effective computation of principal eigenvectors and their eigenvalues and application to high-resolution estimation of frequencies. IEEE Trans Acoust Speech Signal Process. 1986;34(5):1046–53.

    Article  Google Scholar 

  17. Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust Speech Signal Process. 1990;37(7):984–95.

    Article  MATH  Google Scholar 

  18. Li J, Stoica P. Efficient mixed-spectrum estimation with applications to target feature extraction. IEEE Trans Signal Process. 1996;44(2):281–95.

    Article  Google Scholar 

  19. Liu ZS, Li J, Stoica P. RELAX-based estimation of damped sinusoidal signal parameters. Sig Process. 1997;62(3):311–21.

    Article  MATH  Google Scholar 

  20. Besson O, Stoica P. Nonlinear least-squares approach to frequency estimation and detection for sinusoidal signals with arbitrary envelope. Digit Signal Proc. 1999;9(1):45–56.

    Article  Google Scholar 

  21. Chatterjee C, Kashyap R, Boray G. Estimation of close sinusoids in colored noise and model discrimination. IEEE Trans Acoust Speech Signal Process. 1987;35(3):328–37.

    Article  Google Scholar 

  22. Kay SM, Nagesha V. Maximum likelihood estimation of signals in autoregressive noise. IEEE Trans Signal Process. 1994;42(1):88–101.

    Article  Google Scholar 

  23. Priestley MB. Spectral analysis and time series. J Am Stat Assoc. 1981;79(385).

    Google Scholar 

  24. Högbom JA. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron & Astrophys Suppl. 1974;15(15):417.

    Google Scholar 

  25. Gough PT. A fast spectral estimation algorithm based on the FFT. IEEE Trans Signal Process. 1994;42(6):1317–22.

    Article  Google Scholar 

  26. Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans Acoust Speech Signal Process. 1988;36(10):1553–60.

    Article  MATH  Google Scholar 

  27. Hwang JK, Chen YC. Super-resolution frequency estimation by alternating notch periodogram. IEEE Trans Signal Process. 1993;41(2):727–41.

    Article  MATH  Google Scholar 

  28. Tsao J, Steinberg BD. Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique. IEEE Trans Antennas Propag. 1988;36(4):543–56.

    Article  Google Scholar 

  29. Kay SM. Modern spectral estimation: theory and application. London: Prentice Hall International; 1988.

    MATH  Google Scholar 

  30. Stoica P, Nehorai A. Statistical analysis of two nonlinear least-squares estimators of sine-wave parameters in the colored-noise case. Circuits, Syst, Signal Process. 1989;8(1):3–15.

    Article  MathSciNet  MATH  Google Scholar 

  31. Strang G. Linear algebra and its applications. Brooks Cole: Cengage Learning; 1976.

    MATH  Google Scholar 

  32. Stoica P, Moses RL, Friedlander B, et al. Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements. IEEE Trans Acoust Speech Signal Process. 2010;37(3):378–92.

    Article  Google Scholar 

  33. Soderstrom T, Stoica P. System identification. London: Prentice Hall International; 1989.

    MATH  Google Scholar 

  34. Graham A. Kronecker products and matrix calculus with applications. Chichester: Ellis Horwood; 1982.

    MATH  Google Scholar 

  35. Liu ZS, Li J. Implementation of the RELAX algorithm. IEEE Trans Aerosp Electron Syst. 1998;34(2):657–64.

    Article  Google Scholar 

  36. Bandler JW. Optimization methods for computer-aided design. IEEE Trans Microw Theory Tech. 1969;17(8):533–52.

    Article  Google Scholar 

  37. Stoica P, Eykhoff P, Janssen P. Model-structure selection by cross-validation. Int J Control. 1986;43(6):1841–78.

    Article  MathSciNet  MATH  Google Scholar 

  38. Hannan EJ. Estimating the dimension of a linear system. J Multivar Anal. 1981;11(4):459–73.

    Article  MathSciNet  MATH  Google Scholar 

  39. Kay SM, Marple SLJ. Spectrum analysis—a modern perspective. Proc IEEE. 1981;69(11):1380–419.

    Article  Google Scholar 

  40. Stoica P, Nehorai A. MUSIC maximum likelihood and Cramer-Rao bound. IEEE Trans Acoust Speech Signal Process. 1989;37(5):720–41.

    Article  MathSciNet  MATH  Google Scholar 

  41. Yau SF, Bresler Y. A compact Cramer-Rao bound expression for parametric estimation of superimposed signals. IEEE Trans Signal Process. 1992;40(5):1226–30.

    Article  MATH  Google Scholar 

  42. Shu JJ. Parameter estimation algorithm for exponential decay sinusoidal signal and its application. Wuhan University of Engineering Master’s thesis, WuHan;2011.

    Google Scholar 

  43. Umesh S, Tufts DW. Estimation of parameters of exponentially damped sinusoids using fast maximum likelihood estimation with application to NMR spectroscopy data. IEEE Trans Signal Process. 1996;44(9):2245–59.

    Article  Google Scholar 

  44. Tufts DW, Kumaresan R, Kirsteins I. Data adaptive signal estimation by singular value decomposition of a data matrix. Proc IEEE. 1982;70(6):684–5.

    Article  Google Scholar 

  45. Cadzow JA. Signal enhancement-a composite property mapping algorithm. IEEE Trans Acoust Speech Signal Process. 1988;36(1):49–62.

    Article  MathSciNet  MATH  Google Scholar 

  46. van Huffel S. Enhanced resolution based on minimum variance estimation and exponential data modeling. Sig Process. 1993;33(93):333–55.

    Article  Google Scholar 

  47. Li J, Stoica P. Angle and waveform estimation via RELAX. IEEE Trans Aerosp & Electron Syst Aes. 1997;33(3):1077–87.

    Article  Google Scholar 

  48. Karmanov VG. Programmation mathematique. Moscow: Editions Mir; 1977.

    MATH  Google Scholar 

  49. Zangwill WI, Mond B. Nonlinear programming: a unified approach. New Jersey: Prentice-Hall; 1969.

    MATH  Google Scholar 

  50. Bunday BD. Basic optimization methods. London: Edward Arnold Ltd; 1984.

    Google Scholar 

  51. Bresler Y, Macovski A. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Trans Acoust Speech Signal Process. 1986;34(5):1081–9.

    Article  Google Scholar 

  52. Kumaresan R, Scharf L, Shaw A. An algorithm for pole-zero modeling and spectral analysis. IEEE Trans Acoust Speech Signal Process. 1986;34(3):637–40.

    Article  Google Scholar 

  53. Li J, Stoica P, Liu ZS. Comparative study of IQML and mode for direction-of-arrival estimation. IEEE Int Conf Acoust, Speech, Signal Process. 1997;5:3509–12.

    Google Scholar 

  54. Kumaresan R, Tufts DW. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise. IEEE Trans Acoust Speech Signal Process. 1982;30(6):833–40.

    Article  Google Scholar 

  55. Stoica P, Li J, Söderström T. On the inconsistency of IQML. Sig Process. 1997;56(2):185–90.

    Article  MATH  Google Scholar 

  56. Stoica P, Nehorai A. Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Trans Acoust Speech Signal Process. 1990;38(10):1783–95.

    Article  MATH  Google Scholar 

  57. Bangs WJ. Array processing with generalized beamformers. Ph.D. dissertation, Yale University, New Haven; 1971.

    Google Scholar 

  58. Wu R, Li J, Bi Z, et al. SAR image formation via semiparametric spectral estimation. IEEE Trans Aerosp Electron Syst. 1999;35(4):1318–33.

    Article  Google Scholar 

  59. Zhou G. Random amplitude and polynomial phase modeling of non stationary processes using higher-order and cyclic statistics. Ph.D. dissertation, University of Virginia, Charlottesville; 1995.

    Google Scholar 

  60. Besson O, Stoica P. Sinusoidal signals with random amplitude: least-squares estimators and their statistical analysis. IEEE Trans Signal Process. 1995;43(11):2733–44.

    Article  Google Scholar 

  61. Doviak RJ, Zrnic DS. Doppler radar & weather observations. New York: Dover Publications Inc; 2014.

    Google Scholar 

  62. Baggeroer AB, Metzger LS, Moura JMF, et al. Detection, estimation, and modulation theory. A Papoulis Probab Random Var & Stoch Process. 1968;8(10):293–303.

    Google Scholar 

  63. Stoica P, Jakobsson A, Li J. Cisoid parameter estimation in the colored noise case: asymptotic Cramer-Rao bound, maximum likelihood, and nonlinear least-squares. IEEE Trans Signal Process. 1997;45(8):2048–59.

    Article  Google Scholar 

  64. Rosenlicht M. Introduction to spectral analysis. New York: Dover Publications Inc; 1997.

    MATH  Google Scholar 

  65. Proakis J. Digital communications. New York: McGraw-Hill Science; 1995.

    MATH  Google Scholar 

  66. Zhou G, Giannakis GB. Harmonics in multiplicative and additive noise: performance analysis of cyclic estimators. IEEE Trans Signal Process. 1995;43(6):1445–60.

    Article  Google Scholar 

  67. Giannakis GB, Zhou G. Harmonics in multiplicative and additive noise: parameter estimation using cyclic statistics. IEEE Trans Signal Process. 1995;43(9):2217–21.

    Article  Google Scholar 

  68. Francos JM, Friedlander B. Bounds for estimation of multicomponent signals with random amplitude and deterministic phase. IEEE Trans Signal Process. 1995;43(5):1161–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renbiao Wu .

Appendices

Appendix 3.1: CRB for Sinusoidal Signal Parameter Estimation

When the additive noise is a zero-mean Gaussian white noise, [40, 41] give the CRB of sinusoidal signal parameter estimation. The CRB of the corresponding sinusoidal parameter estimation is given below when the additive noise follows a zero-mean Gaussian color noise with unknown covariance matrix \( \varvec{Q} \).

The observation data vector can be expressed as

$$ \varvec{y} = \varvec{\varOmega \alpha } + \varvec{e} $$
(3.79)

where, for a one-dimensional sinusoidal signal, \( \varvec{y} \) is defined by (2.80); \( \varvec{\varOmega} \) equals \( \varvec{A} \) in (2.84). For a two-dimensional sinusoidal signal, \( \varvec{y} \) is defined by (3.17); \( \varvec{\varOmega}= \left[ {\varvec{a}(f_{1} ) \otimes \overline{\varvec{a}} (\bar{f}_{1} ),\varvec{a}(f_{2} ) \otimes \overline{\varvec{a}} (\bar{f}_{2} ), \ldots ,\varvec{a}(f_{P} ) \otimes \overline{\varvec{a}} (\bar{f}_{P} )} \right] \) and \( \varvec{e} \) are defined as a noise vector; Let \( \varvec{Q} \) denote the covariance matrix for noise vector \( \varvec{e} \).

The variables in the likelihood function of \( \varvec{y} \) have unknown elements in \( \varvec{Q} \), sinusoidal signal frequencies, and the real and imaginary parts of the sinusoidal signal amplitude. The \( (i,j) \) th element of the Fisher information matrix for Gaussian distribution parameter estimation can be given by the following extended Slepian-Bangs formula [57] (see Appendix 1.2)

$$ \left\{ \varvec{J} \right\}_{ij} = {\text{trace}}\left( {\varvec{Q}^{ - 1} \varvec{Q}_{i}^{\prime } \varvec{Q}^{ - 1} \varvec{Q}_{j}^{\prime } } \right) + 2\text{Re} \left[ {\left( {\varvec{\alpha}^{\text{H}}\varvec{\varOmega}^{\text{H}} } \right)^{\prime }_{i} \varvec{Q}^{ - 1} \left( {\varvec{\varOmega \alpha }} \right)^{\prime }_{j} } \right] $$
(3.80)

where \( \varvec{X}_{i}^{\prime } \) denotes the gradient of \( \varvec{X} \) with respect to the ith unknown parameter; \( {\text{trace(}}\varvec{X} ) \) denotes the trace of \( \varvec{X} \); \( {\text{Re(}}\varvec{X} ) \) denotes the real part of \( \varvec{X} \), and \( {\text{Im(}}\varvec{X} ) \) denotes the imaginary part of \( \varvec{X} \). Note that since \( \varvec{Q} \) is not dependent on the parameters in \( (\varvec{\varOmega \alpha }) \), and \( (\varvec{\varOmega \alpha }) \) is not dependent on the elements in \( \varvec{Q} \), \( \varvec{J} \) is a block diagonal matrix. This simple finding means that as long as we replace \( \varvec{\varOmega} \) with \( \varvec{Q}^{ - 1/2}\varvec{\varOmega} \) and \( \varvec{\varOmega}_{i}^{\prime } \) with \( \varvec{Q}^{ - 1/2}\varvec{\varOmega}_{i}^{\prime } \) in the CRB formula in the case of Gaussian white noise, we can obtain the CRB for sinusoidal signal parameter estimation in the case of colored noise.

Let

$$ \varvec{G} = 2\varvec{\varOmega}^{\text{H}} \varvec{Q}^{ - 1}\varvec{\varOmega} $$
(3.81)
$$ \varvec{\varDelta } = 2\varvec{\varOmega}^{\text{H}} \varvec{Q}^{ - 1} \varvec{DP} $$
(3.82)

where for one-dimensional sinusoidal signal \( \varvec{P} = {\text{diag}}(\varvec{\alpha}) \), \( \varvec{D} \)’s pth column (\( p = 1,\;2,\; \ldots ,\;P \)) is \( \partial \varvec{a}(f_{p} )/\partial f_{p} \). For two-dimensional sinusoidal signal, \( \varvec{P} = {\text{diag}}(\varvec{\alpha}) \otimes \varvec{I}_{2} \), where \( \varvec{I}_{2} \) is a two-dimensional identity matrix; \( \varvec{D} \)’s \( (2p - 1) \) th column and \( (2p) \) th column are \( \partial \left[ {\varvec{a}(f_{p} ) \otimes \bar{\varvec{a}}(\bar{f}_{p} )} \right]/\partial {f}_{p} \), and \( \partial \left[ {\varvec{a}(f_{p} ) \otimes \bar{\varvec{a}}(\bar{f}_{p} )} \right]/\partial \bar{f}_{p} \) respectively.

Next, we let

$$ \varvec{\varGamma}= 2\text{Re} \left[ {\varvec{P}^{\text{H}} \varvec{D}^{\text{H}} \varvec{Q}^{ - 1} \varvec{DP}} \right] $$
(3.83)
$$ \varvec{\eta}= \left[ {\begin{array}{*{20}c} {\text{Re}^{\text{T}} (\varvec{\alpha}),} & {\text{Im}^{\text{T}} (\varvec{\alpha}),} & {\varvec{f}^{\text{T}} } \\ \end{array} } \right]^{\text{T}} $$
(3.84)

For a one-dimensional sinusoidal signal, \( \varvec{f} = [f_{1} ,\;f_{2} ,\; \ldots ,\,f_{P} ]^{\text{T}} \); for a two-dimensional sinusoidal signal, \( \varvec{f} = [f_{1} ,\; \, \bar{f}_{1} ,\; \, f_{2} ,\;\bar{f}_{2} ,\; \ldots ,\;f_{P} ,\;\bar{f}_{P} ]^{\text{T}} \). Similar to the results obtained by [18, 40], the CRB of \( \varvec{\eta} \) can be obtained as

$$ {\text{CRB}}\left(\varvec{\eta}\right){ = }\left[ {\begin{array}{*{20}c} {\text{Re} \left( \varvec{G} \right)} & { - \text{Im} \left( \varvec{G} \right)} & {\text{Re} \left( \varvec{\varDelta } \right)} \\ {\text{Im} \left( \varvec{G} \right)} & {\text{Re} \left( \varvec{G} \right)} & {\text{Im} \left( \varvec{\varDelta } \right)} \\ {\text{Re}^{\text{T}} \left( \varvec{\varDelta } \right)} & {\text{Im}^{\text{T}} \left( \varvec{\varDelta } \right)} &\varvec{\varGamma}\\ \end{array} } \right]^{ - 1} $$
(3.85)

Notice when \( \varvec{Q} = \sigma^{2} \varvec{I} \), the above results are consistent with the results in [40, 41].

Note that when the additive noise follows an AR or ARMA random process, the CRB of the sinusoidal parameter estimate can also be calculated by (3.85), where the noise covariance matrix \( \varvec{Q} \) can be calculated using AR or ARMA noise model parameters [18].

Appendix 3.2: CRB for Exponentially Decaying Sinusoidal Signal Parameter Estimation

When the additive noise is a zero-mean colored noise random process and the covariance matrix \( \varvec{Q} \) is unknown, the CRB of the exponentially decaying sinusoidal signal parameters is given below. Assuming that the observation data vector can be expressed as

$$ \varvec{y} = \varvec{\varPhi \alpha } + \varvec{e} $$
(3.86)

The definition of \( \varvec{y} \) is shown in (3.31), and \( \varvec{e} \) is a noise vector. \( \varvec{\varPhi} \) has the following form

$$ \varvec{\varPhi}= \left[ {\varvec{\varphi }_{1} ,\varvec{\varphi }_{2} , \ldots ,\varvec{\varphi }_{P} } \right] $$
(3.87)

The definition of \( \varvec{\varphi }_{{{\kern 1pt} p}} \) is shown in (3.32), and we have

$$ \varvec{\alpha}= \left[ {\alpha_{1} ,\alpha_{2} , \ldots ,\alpha_{P} } \right]^{\text{T}} $$
(3.88)

The unknown parameters for the likelihood function of \( \varvec{y} \) are the following: elements in \( \varvec{Q} \), the real and imaginary parts of the amplitude, the attenuation factor and the frequency. The \( (i,\;j) \) th element of the Fisher information matrix can be given by the following extended Slepian-Bangs formula [57] (see Appendix 1.2)

$$ \left\{ \varvec{J} \right\}_{ij} = {\text{trace}}\left( {\varvec{Q}^{ - 1} \varvec{Q}_{i}^{\prime } \varvec{Q}^{ - 1} \varvec{Q}_{j}^{\prime } } \right) + 2\text{Re}\left[ {\left( {\varvec{\alpha}^{\text{H}}\varvec{\varPhi}^{\text{H}} } \right)^{\prime }_{i} \varvec{Q}^{ - 1} \left( {\varvec{\varPhi \alpha }} \right)^{\prime }_{j} } \right] $$
(3.89)

Note that since \( \varvec{Q} \) is not dependent on the parameters in \( (\varvec{\varPhi \alpha }) \), and \( (\varvec{\varPhi \alpha }) \) is not dependent on the elements in \( \varvec{Q} \), \( \varvec{J} \) is a block diagonal matrix. Then, we know that the CRB of the attenuated sinusoidal signal parameter estimation can be determined by the second term in the right of Eq. (3.89). Let

$$ \varvec{G}_{11} = 2\varvec{\varPhi}^{\text{H}} \varvec{Q}^{ - 1}\varvec{\varPhi} $$
(3.90)
$$ \varvec{G}_{12} = 2\varvec{\varPhi}^{\text{H}} \varvec{Q}^{ - 1} \varvec{C\varPhi \varTheta } $$
(3.91)
$$ \varvec{G}_{21} = \varvec{G}_{12}^{\text{H}} $$
(3.92)
$$ \varvec{G}_{22} = 2\varvec{\varTheta}^{\text{H}}\varvec{\varPhi}^{\text{H}} \varvec{CQ}^{ - 1} \varvec{C\varPhi \varTheta } $$
(3.93)

where \( \varvec{C} = {\text{diag}}\left\{ {0,\;1,\; \ldots ,\;N} \right\} \), \( \varvec{\varTheta}= {\text{diag}}\left\{\varvec{\alpha}\right\} \). Let

$$ \varvec{\eta}= \left[ {\begin{array}{*{20}c} {\text{Re}^{\text{T}} \left(\varvec{\alpha}\right),} & {\text{Im}^{\text{T}} \left(\varvec{\alpha}\right),} & {\varvec{d}^{\text{T}} ,} & {\varvec{\omega}^{\text{T}} } \\ \end{array} } \right]^{\text{T}} $$
(3.94)

where

$$ \varvec{d} = \left[ {d_{1} ,d_{2} , \ldots ,d_{P} } \right]^{\text{T}} $$
(3.95)
$$ \varvec{\omega}= \left[ {\omega_{1} ,\omega_{2} , \ldots ,\omega_{P} } \right]^{\text{T}} $$
(3.96)

We can obtain the formula to calculate CRB [19]

$$ \varvec{CRB}(\varvec{\eta}) = \left[ {\begin{array}{*{20}c} {\text{Re} (\varvec{G}_{11} )} & { - \text{Im} (\varvec{G}_{11} )} & {\text{Re} (\varvec{G}_{12} )} & { - \text{Im} (\varvec{G}_{12} )} \\ {\text{Im} (\varvec{G}_{11} )} & {\text{Re} (\varvec{G}_{11} )} & {\text{Im} (\varvec{G}_{12} )} & {\text{Re} (\varvec{G}_{12} )} \\ {\text{Re} (\varvec{G}_{21} )} & { - \text{Im} (\varvec{G}_{21} )} & {\text{Re} (\varvec{G}_{22} )} & { - \text{Im} (\varvec{G}_{22} )} \\ {\text{Im} (\varvec{G}_{21} )} & {\text{Re} (\varvec{G}_{21} )} & {\text{Im} (\varvec{G}_{22} )} & {\text{Re} (\varvec{G}_{22} )} \\ \end{array} } \right]^{ - 1} $$
(3.97)

Appendix 3.3: CRB for Arbitrary Envelope Sinusoidal Signal Parameter Estimation

Next, we analyze the performance of NLS on the frequency estimation of arbitrary envelope sinusoidal waves. The following procedure gives the estimated asymptotic variance in (3.68).

Theorem: Assuming that in (3.47) \( x(n) \) follows a Gaussian stationary random process and \( e(n) \) follows a Gaussian white noise with zero mean and \( \sigma_{e}^{2} \) variance; and the asymptotic variance of \( N^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} \times (\hat{\omega } - \omega ) \) is given by the following equation [20]

$$ \begin{aligned} \mathop {\lim }\limits_{N \to \infty } N^{3} \xi \left( {\hat{\omega } - \omega } \right)^{2} & = \frac{{6\sigma_{e}^{2} }}{{r_{a} \left( 0 \right)}}\left[ {1 + \frac{1}{2}\frac{{\sigma_{e}^{2} }}{{r_{a} \left( 0 \right)}}} \right] \\ & = \frac{6}{\text{SNR}}\left[ {1 + \frac{1}{2}{\text{SNR}}_{{}}^{ - 1} } \right] \\ \end{aligned} $$
(3.98)

where \( a(t) = |\alpha |x(n) \) and \( {\text{SNR}} = r_{a} (0)/\sigma_{e}^{2} \). It should be noted that the variance of the NLS frequency estimation method described above does not depend on the parameter model of the envelope [65,66,67]; instead it relies on \( r_{a} (0) \) and \( r_{a} (0) \triangleq {\text{E[}}a^{2} (n) ] \).

The estimation variance given on \( \hat{\omega } \) described above is compared with the CRB. If the assumed covariance matrix for \( a(n) \) follows a Gaussian stationary process that can be parameterized by a finite dimensional vector \( \varvec{\theta} \), and when the SNR is higher, the CRB can be expressed as [1]

$$ {\text{CRB}} = \frac{1}{{N^{3} }}\frac{{6\sigma_{e}^{2} }}{{r_{a} (0)}} $$
(3.99)

When the SNR is high, we can conclude that the variance of the NLS frequency estimation is very close to the CRB. It is observed that, as compared to (3.99), the NLS frequency estimation variance in (3.98) does not depend on a particular model of envelope, nor does it need to have \( a(n) \) follow a finite dimensional parametric model [20, 68].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, R., Jia, Q., Yang, L., Feng, Q. (2019). Application of RELAX in Line Spectrum Estimation. In: Principles and Applications of RELAX: A Robust and Universal Estimator. Springer, Singapore. https://doi.org/10.1007/978-981-13-6932-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6932-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6931-5

  • Online ISBN: 978-981-13-6932-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics