Skip to main content

Drug-Loaded UHMWPE to Inhibit Wear Particle-Induced Osteolysis: Processing, Characterization, and Biological Evaluation

  • Chapter
  • First Online:
Book cover UHMWPE Biomaterials for Joint Implants

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 13))

Abstract

Osteolysis induced by ultrahigh molecular weight polyethylene (UHMWPE) wear particles is currently recognized as a major cause to the aseptic loosening of joint prosthesis. Improving the wear resistance of UHMWPE significantly reduces wear particle-related osteolysis. However, the current wear-resistant UHMWPE is still difficult to satisfy the clinical requirement for the increasing needs of young and active patients. In this chapter, UHMWPE loaded with 17β-estradiol (E2) or alendronate sodium (ALN), potential drugs to prevent wear particle-induced osteolysis, was processed and characterized. Furthermore, in vitro release of drugs and cell responses to drug-loaded UHMWPE wear particles were investigated. Results showed that the mechanical strength of UHMWPE-E2 and UHMWPE-ALN decreased with the addition of drugs in a dose-dependent manner. However, there was no significant difference in mechanical strength of UHMWPE-ALN (1 wt. % ALN) and UHMWPE due to the improved distribution of ALN in UHMWPE, in which surfactant Pluronic F68 and mechanical activation were used. Correspondingly, the wear rate and coefficient of friction of UHMWPE-ALN were confirmed similar to those of UHMWPE. The release of E2 and ALN from wear particles of drug-loaded UHMWPE in phosphate buffered solution (PBS) in vitro both includes three stages: the initial burst release, the following rapid release, and the final slow release. The ALN release rate in wear process was higher than that of non-wear test. Furthermore, the released drugs increase the proliferation and alkaline phosphatase activity of osteoblasts, while inhibiting the proliferation and cytokines of macrophages. As a result, drug-loaded UHMWPE might have potential clinical application to prevent the wear particle-induced osteolysis in artificial joint replacements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurtz SM, Muratoglu OK, Evans M et al (1999) Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20:1659–1688

    Article  CAS  Google Scholar 

  2. Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26:1271–1286

    Article  CAS  Google Scholar 

  3. Amstutz HC, Campbell P, Kossovsky N et al (1992) Mechanism and clinical significance of wear particles-induced osteolysis. Clin Orthop Res 276:7–18

    Article  Google Scholar 

  4. Harris WH (1995) The problem is osteolysis. Clin Orthop Res 311:46–53

    Google Scholar 

  5. Willert HG, Bertram H, Buchhorn GH (1990) Osteolysis in alloarthroplasty of the hip. The role of ultra-high molecular weight polyethylene wear particles. Clin Orthop Relat Res 258:95–107

    Article  Google Scholar 

  6. Learmonth ID, Young C, Rorabeck C (2007) The operation of century total hip replacement. Lancet 370:1508–1519

    Article  Google Scholar 

  7. Pruitt LA (2005) Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 26:905–915

    Article  CAS  Google Scholar 

  8. Chiesa R, Tanzi MC, Alfonsi S et al (2000) Enhanced wear performance of highly crosslinked UHMWPE for artificial joints. J Biomed Mater Res 50:381–387

    Article  CAS  Google Scholar 

  9. Shi W, Dong H, Bell T (2003) Wear performance of ion implanted ultra high molecular weight polyethylene. Surf Eng 19:279–283

    Article  CAS  Google Scholar 

  10. Sariali E, Veysi V, Stewart T (2008) Biomechanics of the human hip–consequences for total hip replacement. Curr Orthop 22:371–375

    Article  Google Scholar 

  11. Seon JK, Song EK (2006) Navigation-assisted less invasive total knee arthroplasty compared with conventional total knee arthroplasty. J Arthroplast 21:777–782

    Article  Google Scholar 

  12. Agarwal S (2004) Osteolysis—basic science, incidence and diagnosis. Curr Orthop 18:220–231

    Article  Google Scholar 

  13. Wang ML, Sharkey PF, Tuan RS (2004) Particle bioreactivity and wear-mediated osteolysis. J Arthroplast 19:1028–1038

    Article  Google Scholar 

  14. von Knoch F, Heckelei A, Wedemeyer C et al (2005) The effect of simvastatin on polyethylene particle-induced osteolysis. Biomaterials 26:3549–3555

    Article  Google Scholar 

  15. Ren WP, Li XH, Chen BD et al (2004) Erythromycin inhibits wear particles-induced osteoclastogenesis by modulation of murine macrophage NF-kB activity. J Orthopaed Res 22:21–29

    Article  CAS  Google Scholar 

  16. Millett PJ, Allen MJ, Bostrom MP (2002) Effects of alendronate on particle-induced osteolysis in a rat model. J Bone Joint Surg Am 84:236–249

    Article  Google Scholar 

  17. Thadani PJ, Waxman B, Sladek E et al (2002) Inhibition of particulate particles-induced osteolysis by alendronate in a rat model. Orthopedics 25:59–63

    Article  Google Scholar 

  18. Iwase M, Kim KJ, Kobayashi Y et al (2002) A novel bisphosphonate inhibits inflammatory bone resorption in a rat osteolysis model with continuous infusion of polyethylene particles. J Orthopaed Res 20:499–505

    Article  CAS  Google Scholar 

  19. Shanbhag AS, Hasselman CT, Rubash HE (1997) Inhibition of wear particles mediated osteolysis in a canine total hip arthroplasty model. Clin Orthopaed Relat Res 344:33–43

    Article  Google Scholar 

  20. Im GI, Qureshi SA, Kenney J et al (2004) Osteoblast proliferation and maturation by bisphosphonates. Biomaterials 25:4105–4115

    Article  CAS  Google Scholar 

  21. Akesson K (2003) New approaches to pharmacological treatment of osteoporosis. Bull World Health Organ 81:657–664

    Google Scholar 

  22. Harris SA, Tau KR, Turner RT et al (1996) Estrogen and progestins. In: Bilezikian JP, Raitz LG, Rodan GA (eds) Principles of bone biology, 1st edn. Academic, San Diego, pp 507–520

    Google Scholar 

  23. Kameda T, Mano H, Yuasa T et al (1997) Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 186:489–495

    Article  CAS  Google Scholar 

  24. Holzer G, Einhorn TA, Majeska RJ (2002) Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cells. J Orthopaed Res 20:281–288

    Article  CAS  Google Scholar 

  25. Disilvio L, Jameson J, Gamie Z et al (2006) In vitro evaluation of the direct effect of estradiol on human osteoblasts (HOB) and human mesenchymal stem cells (h-MSCs). Injury 37:S33–S42

    Article  Google Scholar 

  26. Qu Q, Perälä-Heape M, Kapanen A et al (1998) Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone 22:201–209

    Article  CAS  Google Scholar 

  27. Girasole G, Jilka RL, Passeri G et al (1992) 17β-estradiol-inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antisteoporotic effect of estrogens. J Clin Invest 89:883–891

    Article  CAS  Google Scholar 

  28. Jilka RL, Hangoc G, Girasole G et al (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91

    Article  CAS  Google Scholar 

  29. Steeve KT, Marc P, Sandrine T et al (2004) IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 15:49–60

    Article  CAS  Google Scholar 

  30. Astrand J, Aspenberg P (2004) Topical, single dose bisphosphonate treatment reduced bone resorption in a rat model for prosthetic loosening. J Orthopaed Res 22:244–249

    Article  CAS  Google Scholar 

  31. Peter B, Pioletti DP, Laib S et al (2005) Calcium phosphate drug delivery system: influence of local zoledro zoledronate release on bone implant osteointegration. Bone 36:52–60

    Article  CAS  Google Scholar 

  32. Peter B, Gauthier O, Laib S et al (2006) Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats. J Biomed Mater Res A 76:133–143

    Article  Google Scholar 

  33. Duan K, Fan YW, Wang RZ (2005) Electrolytic deposition of calcium etidronate drug coating on titanium substrate. J Biomed Mater Res B 72:43–51

    Article  Google Scholar 

  34. Qu SX, Bai YL, Liu XM et al (2013) Study on in vitro release and cell response to alendronate sodium-loaded ultrahigh molecular weight polyethylene loaded with alendronate sodium wear particles to treat the particles-induced osteolysis. J Biomed Mater Res A 101:394–403

    Article  Google Scholar 

  35. Liu AQ, Qu SX, Chao MM et al (2008) UHMWPE carrying estradiol to treat the particle-induced osteolysis—processing and characterizing. J Biomed Mater Res A 90:496–505

    Google Scholar 

  36. Yang HL, Xu YZ, Zhu M et al (2016) Inhibition of titanium-particle-induced inflammatory osteolysis after local administration of dopamine and suppression of osteoclastogenesis via D2-like receptor signaling pathway. Biomaterials 80:1–10

    Article  CAS  Google Scholar 

  37. Lombardi A (1999) Treatment of paget’s disease of bone with alendronate. Bone 24:S59–S61

    Article  Google Scholar 

  38. Otsuka M, Matsuda Y, Baig AA et al (2000) Calcium-level responsive controlled drug delivery from implant dosage forms to treat osteoporosis in an animal model. Adv Drug Deliv Rev 42:249–258

    Article  CAS  Google Scholar 

  39. Liu XM, Qu SX, Lu X et al (2009) Time-of-flight secondary ion mass spectrometry study on the distribution of alendronate sodium in drug-loaded ultra-high molecular weight polyethylene. Biomed Mater 4:065008

    Article  Google Scholar 

  40. Yang D, Qu SX, Huang J et al (2012) Characterization of alendronate sodium-loaded UHMWPE for anti-osteolysis in orthopedic applications. Mater Sci Eng C 32:83–91

    Article  CAS  Google Scholar 

  41. Gong KM, Qu SX, Liu YM et al (2016) The mechanical and tribological properties of UHMWPE loaded ALN after mechanical activation for joint replacements. J Mech Behav Biomed Mater 61:334–344

    Article  CAS  Google Scholar 

  42. Zhang CZ, Qu SX, Liao Y et al (2011) Optimization on the dispersion of alendronate sodium in drug-loaded UHMWPE by orthogonal design. Acta Mater Compos Sin 28:109–117

    Google Scholar 

  43. Xie XL, Tang CY, Chan KYY et al (2003) Wear performance of ultrahigh molecular weight polyethylene/quartz composites. Biomaterials 24:1889–1896

    Article  CAS  Google Scholar 

  44. Spiegelberg S (2004) Thermal transitions. In: Kurtz SM (ed) The UHMWPE handbook. Ultra-high molecular weight polyethylene in total joint replacement, 1st edn. Academic, New York, p 266

    Google Scholar 

  45. ASTM D638-03 (2003) Standard test method for tensile properties of plastics. American Society for Testing and Materials, New York

    Google Scholar 

  46. Johnson KL (1987) Normal contact of elastic solids-hertz theory. In: Johnson KL (ed) Contact mechanics, 1st edn. Cambridge University, Britain, p 90

    Google Scholar 

  47. Nusbaum HJ, Rose RM, Paul IL et al (1979) Wear mechanisms for ultrahigh molecular weight polyethylene in the total hip prosthesis. J Appl Polym Sci 23:777–789

    Article  CAS  Google Scholar 

  48. ASTM F2183-02 (2002) Standard test method for small punch testing of ultra-high molecular weight polyethylene used in surgical implants. American Society for Testing and Materials, New York

    Google Scholar 

  49. Kurtz SM, Foulds JR, Jewett CW et al (1997) Validation of a small punch testing technique to characterize the mechanical behavior of ultra-high molecular weight polyethylene. Biomaterials 18:1659–1663

    Article  CAS  Google Scholar 

  50. Edidin AA, Kurtz SM (2000) Influence of mechanical behavior on the wear of 4 clinically relevant polymeric biomaterials in a hip simulator. J Arthroplast 15:321–331

    Article  CAS  Google Scholar 

  51. Fu SY, Feng XQ, Lauke B et al (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39:933–961

    Article  Google Scholar 

  52. Kanaga Karuppiah KS, Bruck AL, Sundararajan S et al (2008) Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Acta Biomater 4:1401–1410

    Article  CAS  Google Scholar 

  53. Jin ZM, Stone M, Ingham E et al (2006) (v) Biotribology. Curr Orthop 20:32–40

    Article  Google Scholar 

  54. Wang A, Sun DC, Stark C et al (1995) Wear mechanisms of UHMWPE in total joint replacements. Wear 181–183:241–249

    Article  Google Scholar 

  55. EI-Domiaty A, El-Fadaly M, Nassef AE (2002) Wear characteristics of ultrahigh molecular weight polyethylene (UHMWPE). J Mater Eng Perform 11:577–583

    Article  Google Scholar 

  56. Angker L, Nockolds C, Swain MV et al (2004) Quantitative analysis of the mineral content of sound and carious primary dentine using BSE imaging. Arch Oral Biol 49:99–107

    Article  Google Scholar 

  57. Ho SP, Carpick RW, Boland T et al (2002) Nanotribology of CoCr–UHMWPE TJR prosthesis using atomic force microscopy. Wear 253:1145–1155

    Article  CAS  Google Scholar 

  58. Wang QL, Liu JL, Ge SR (2009) Study on biotribological behavior of the combined joint of CoCrMo and UHMWPE/BHA composite in a hip joint simulator. J Bionic Eng 6:378–386

    Article  Google Scholar 

  59. Muratoglu OK, Bragdon CR, O’connor DO et al (1999) Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials 20:1463–1470

    Article  CAS  Google Scholar 

  60. Sauter C, Emin MA, Schuchmann HP et al (2008) Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrason Sonochem 15:517–523

    Article  CAS  Google Scholar 

  61. Barbour PSM, Stone MH, Fisher J (1999) A study of the wear resistance of three types of clinically applied UHMWPE for total replacement hip prostheses. Biomaterials 20:2101–2106

    Article  CAS  Google Scholar 

  62. Wu JJ, Buckley CP, O’Connor JJ (2002) Mechanical integrity of compression-moulded ultra-high molecular weight polyethylene: effects of varying process conditions. Biomaterials 23:3773–3783

    Article  CAS  Google Scholar 

  63. Fu J, Ghali BW, Lozynsky AJ et al (2010) Ultra high molecular weight polyethylene with improved plasticity and toughness by high temperature melting. Polymer 51:2721–2731

    Article  CAS  Google Scholar 

  64. Butler JH, Joy DC, Bradley GF et al (1995) Low-voltage scanning electron microscopy of polymers. Polymer 36:1781–1790

    Article  CAS  Google Scholar 

  65. Huang YF, Xu JZ, Li JS et al (2014) Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene. Biomaterials 35:6687–6697

    Article  CAS  Google Scholar 

  66. Qu SX, Liu AQ, Liu XM et al (2012) Study on drug release of and biological response to UHMWPE wear particles carrying estradiol. Appl Surf Sci 262:168–175

    Article  CAS  Google Scholar 

  67. Goncalves S, Santos NC, Martins-Silva J et al (2007) Fluorescence spectroscopy evaluation of fibrinogen-β-estradiol binding. J Photoch Photobiol B 86:170–176

    Article  CAS  Google Scholar 

  68. Edidin AA (2009) Development and application of the small punch test to UHMWPE. In: Kurtz SM (ed) UHMWPE biomaterials handbook. Ultra-high molecular weight polyethylene in total joint replacement, 2nd edn. Academic, New York, p 490

    Google Scholar 

  69. Taha EA, Youssef NF (2003) Spectrophotometric determination of some drugs for osteoporosis. Chem Pharm Bull 51:1444–1447

    Article  CAS  Google Scholar 

  70. Berkland C, King M, Cox A et al (2002) Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release 82:137–147

    Article  CAS  Google Scholar 

  71. Galetz MC, Glatzel U (2010) Molecular deformation mechanisms in UHMWPE during tribological loading in artificial joints. Tribol Lett 38:1–13

    Article  CAS  Google Scholar 

  72. Yang D, Qu SX, Lin SZ et al (2012) Preliminary study on the effect of wear process on drug release of ALN-loaded UHMWPE. Appl Surf Sci 262:207–211

    Article  CAS  Google Scholar 

  73. Goodman SB, Ma T, Chiu R et al (2006) Effects of orthopaedic wear particles on osteoprogenitor cells. Biomaterials 27:6096–6101

    Article  CAS  Google Scholar 

  74. Huang ZN, Ma T, Ren PG et al (2010) Effects of orthopedic polymer particles on chemotaxis of macrophages and mesenchymal stem cells. J Biomed Mater Res A 94:1264–1269

    Google Scholar 

  75. Evans CE (2002) Bisphosphonates modulate the effect of macrophage-like cells on osteoblast. Int J Biochem Cell B 34:554–556

    Article  CAS  Google Scholar 

  76. Igarashi K, Hirafuji M, Adachi H et al (1997) Effects of bisphosphonates on alkaline phosphatase activity, mineralization, and prostaglandin E2 synthesis in the clonal osteoblast-like cell line MC3T3-E1. Prostaglandins Leukot Essent Fatty Acids 56:121–125

    Article  CAS  Google Scholar 

  77. Fang HW, Ho YC, Yang CB et al (2006) Preparation of UHMWPE particles and establishment of inverted macrophage cell model to investigate wear particles induced bioactivities. J Biochem Biophys Methods 68:175–187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxin Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qu, S., Liu, Y., Gong, K. (2019). Drug-Loaded UHMWPE to Inhibit Wear Particle-Induced Osteolysis: Processing, Characterization, and Biological Evaluation. In: Fu, J., Jin, ZM., Wang, JW. (eds) UHMWPE Biomaterials for Joint Implants. Springer Series in Biomaterials Science and Engineering, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6924-7_6

Download citation

Publish with us

Policies and ethics