Skip to main content

Natural Polyphenol-Stabilized Highly Cross-Linked UHMWPE for Joint Implants

  • Chapter
  • First Online:
UHMWPE Biomaterials for Joint Implants

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 13))

Abstract

Radiation cross-linked ultra-high molecular weight polyethylene (UHMWPE) with high mechanical strength, wear resistance, and oxidative stability is critical for the long-term performance and life span of joint implants. The use of antioxidants and/or radical scavengers has proven efficient in stabilizing cross-linked UHMWPE against oxidation, whereas challenges remain to explore new methods to offer not only oxidative stability but also superior wear resistance and mechanical properties. This chapter introduces the use of natural polyphenols with three hydroxy groups to stabilize irradiated UHMWPE. Dodecyl gallate (DG) and gallic acid (GA) are blended with UHMWPE and consolidated by compression moulding prior to e-beam irradiation. The polyphenols show a slight phenol loss and offer improved oxidation stability. Such a strong antioxidation potency even shows a significant protection against the oxidative challenges. The antioxidation mechanisms have been investigated. The tensile and impact properties of these polyphenol-stabilized highly cross-linked UHMWPE after accelerated ageing in accordance with ASTMĀ (American Society of Testing Materials) F2003 are superior to those of the irradiated and remelted UHMWPE. Pin-on-disc (POD) wear tests of these materials demonstrate low wear comparable to highly cross-linked and remelted UHMWPE. The oxidation and antioxidation mechanisms with the presence of polyphenols are investigated by analysing the oxidation products and oxidation kinetics. The antioxidants are potent to protect the polymer from oxidation with the presence of unsaturated lipids, which is encouraging for the prevention of the in vivo oxidation of UHMWPE implants related to the synovial lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurtz SM (ed) (2009) UHMWPE biomaterials handbook. Ultra-high molecular weight polyethylene in total joint replacement and medical devices, 2nd edn. Elsevier Inc., New York

    Google ScholarĀ 

  2. Harris W (1995) The problem is osteolysis. Clin Orthop 311:46ā€“53

    Google ScholarĀ 

  3. Kurtz SM, Medel FJ, MacDonald DW, Parvizi J, Kraay MJ, Rimnac CM (2010) Reasons for revision of first-generation highly cross-linked polyethylenes. J Arthroplast 25(6):67ā€“74

    ArticleĀ  Google ScholarĀ 

  4. Muratoglu OK, Bragdon CR, Oā€™Connor DO, Jasty M, Harris WH (2001) A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. Recipient of the 1999 HAP Paul award. J Arthroplasty 16(2):149ā€“160

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Kurtz SM, Manley M, Wang A, Taylor S, Dumbleton J (2002) Comparison of the properties of annealed crosslinked (Crossfire) and conventional polyethylene as hip bearing materials. Bulletin (Hospital for Joint Diseases (New York, NY)) 61(1ā€“2):17ā€“26

    Google ScholarĀ 

  6. Dumbleton J, Dā€™Antonio J, Manley M, Capello W, Wang A (2006) The basis for a second-generation highly cross-linked UHMWPE. Clin Ortho Relat Res 453:265ā€“271

    ArticleĀ  Google ScholarĀ 

  7. Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA (2007) Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylenes. J Biomed Mater Res B Appl Biomater 83(2):380ā€“390

    ArticleĀ  Google ScholarĀ 

  8. Atwood SA, Van Citters DW, Patten EW, Furmanski J, Ries MD, Pruitt LA (2011) Tradeoffs amongst fatigue, wear, and oxidation resistance of cross-linked ultra-high molecular weight polyethylene. J Mech Behav Biomed Mater 4(7):1033ā€“1045

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Tower SS, Currier JH, Currier BH, Lyford KA, Van Citters DW, Mayor MB (2007) Rim cracking of the cross-linked longevity polyethylene acetabular liner after total hip arthroplasty. J Bone Joint Surg Am 89(10):2212ā€“2217

    ArticleĀ  Google ScholarĀ 

  10. Puertolas JA, Medel FJ, Cegonino J, Gomez-Barrena E, Rios R (2006) Influence of the remelting process on the fatigue behavior of electron beam irradiated UHMWPE. J Biomed Mater Res Part B Appl Biomater 76B:346ā€“353

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Costa L, Bracco P, Brach del Prever EM, Luda MP, Trossarelli L (2001) Analysis of products diffused into UHMWPE prosthetic components in vivo. Biomaterials 22(4):307ā€“315

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Currier BH, Van Citters DW, Currier JH, Collier JP (2010) In vivo oxidation in Remelted highly cross-linked retrievals. J Bone Joint Surg 92(14):2409ā€“2418

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Muratoglu OK, Wannomae KK, Rowell SL, Micheli BR, Malchau H (2010) Ex vivo stability loss of irradiated and melted ultra-high molecular weight polyethylene. J Bone Joint Surg 92(17):2809ā€“2816

    ArticleĀ  Google ScholarĀ 

  14. Currier BH, Van Citters DW, Currier JH, Carlson EM, Tibbo ME, Collier JP (2013) In vivo oxidation in retrieved highly crosslinked tibial inserts. J Biomed Mater Res B Appl Biomater 101B(3):441ā€“448

    CASĀ  Google ScholarĀ 

  15. Tomita N, Kitakura T, Onmori N, Ikada Y, Aoyama E (1999) Prevention of fatigue cracks in ultrahigh molecular weight polyethylene joint components by the addition of vitamin E. J Biomed Mater Res 48(4):474ā€“478

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Wolf C, Krivec T, Blassing J, Lederer K, Schneider W (2002) Examination of the suitability of a-tocopherol as a stabilizer for ultra-high molecular weight polyethylene used for articulating surfaces in joint endoprostheses. J Mater Sci Mater Med 13:185ā€“189

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Oral E, Wannomae KK, Hawkins N, Harris WH, Muratoglu OK (2004) Alpha-tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials 25(24):5515ā€“5522

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Shibata N, Tomita N (2005) The anti-oxidative properties of alpha-tocopherol in gamma-irradiated UHMWPE with respect to fatigue and oxidation resistance. Biomaterials 26(29):5755ā€“5762

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Gijsman P, Smelt H, Schumann D (2010) Hindered amine light stabilizers: an alternative for radiation cross-linked UHMwPE implants. Biomaterials 31:6685ā€“6691

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Almalaika S, Ashley H, Issenhuth S (1994) The antioxidant role of alpha-tocopherol in polymers. 1. The nature of transformation products of alpha-tocopherol formed during melt processing of LDPE. J Polym Sci Part A Polym Chem 32(16):3099ā€“3113

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Al-Malaika S, Goodwin C, Issenhuth S, Burdick D (1999) The antioxidant role of alpha-tocopherol in polymers II. Melt stabilising effect in polypropylene. Polym Degrad Stab 64(1):145ā€“156

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Mallegol J, Carlsson DJ, Deschenes L (2001) Antioxidant effectiveness of vitamin E in HDPE and tetradecane at 32 degrees C. Polym Degrad Stab 73(2):269ā€“280

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Oral E, Malhi AS, Wannomae KK, Muratoglu OK (2008) Highly cross-linked ultrahigh molecular weight polyethylene with improved fatigue resistance for total joint arthroplasty ā€“ recipient of the 2006 Hap Paul Award. J Arthroplasty 23(7):1037ā€“1044

    ArticleĀ  Google ScholarĀ 

  24. Oral E, Godleski Beckos C, Malhi AS, Muratoglu OK (2008) The effects of high dose irradiation on the cross-linking of vitamin E-blended ultrahigh molecular weight polyethylene. Biomaterials 29(26):3557ā€“3560

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Oral E, Greenbaum ES, Malhi AS, Harris WH, Muratoglu OK (2005) Characterization of irradiated blends of alpha-tocopherol and UHMWPE. Biomaterials 26(33):6657ā€“6663

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Oral E, Christensen SD, Malhi AS, Wannomae KK, Muratoglu OK (2006) Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E. J Arthroplasty 21(4):580ā€“591. https://doi.org/10.1016/j.arth.2005.07.009

    ArticleĀ  Google ScholarĀ 

  27. Bracco P, Brunella V, Zanetti M, Luda MP, Costa L (2007) Stabilisation of ultra-high molecular weight polyethylene with vitamin E. Polym Degrad Stab 92:2155ā€“2162

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Costa L, Carpentieri I, Bracco P (2009) Post electron-beam irradiation oxidation of orthopedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized with vitamin E. Polym Degrad Stab 94(9):1542ā€“1547

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Kurtz SM, Dumbleton J, Siskey RS, Wang A, Manley M (2009) Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation. J Biomed Mater Res A 90A(2):549ā€“563

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Parth M, Aust N, Lederer K (2002) Studies on the effect of electron beam radiation on the molecular structure of ultra-high molecular weight polyethylene under the influence of alpha-tocopherol with respect to its application in medical implants. J Mater Sci Mater Med 13(10):917ā€“921

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Oral E, Wannomae KK, Rowell SL, Muratoglu OK (2007) Diffusion of vitamin E in ultra-high molecular weight polyethylene. Biomaterials 28(35):5225ā€“5237

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Fiuza SM, Gomes C, Teixeira LJ, GirĆ£o da Cruz MT, Cordeiro MNDS, Milhazes N, Borges F, Marques MPM (2004) Phenolic acid derivatives with potential anticancer propertiesā€“ā€“a structureā€“activity relationship study. Part 1: Methyl, propyl and octyl esters of caffeic and gallic acids. Bioorg Med Chem 12(13):3581ā€“3589

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Cirillo G, Kraemer K, Fuessel S, Puoci F, Curcio M, Spizzirri UG, Altimari I, Iemma F (2010) Biological activity of a gallic acidāˆ’gelatin conjugate. Biomacromolecules 11(12):3309ā€“3315

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Fu J, Shen J, Gao G, Hou R, Xu Y, Cong Y, Cheng Y (2013) Natural polyphenol-stabilised highly crosslinked UHMWPE with high mechanical properties and low wear for joint implants. J Mater Chem B 1:4727ā€“4735

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Wolf C, Macho C, Lederer K (2006) Accelerated ageing experiments with crosslinked and conventional ultra-high molecular weight polyethylene (UHMW-PE) stabilised with Ī±-tocopherol for total joint arthroplasty. J Mater Sci Mater Med 17(12):1333ā€“1340. https://doi.org/10.1007/s10856-006-0608-6

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. MallĆ©gol J, Carlsson DJ, DeschĆŖnes L (2001) Antioxidant effectiveness of vitamin E in HDPE and tetradecane at 32Ā°C. Polym Degrad Stab 73(2):269ā€“280

    ArticleĀ  Google ScholarĀ 

  37. Furmanski J, Anderson M, Bal S, Greenwald AS, Halley D, Penenberg B, Ries M, Pruitt L (2009) Clinical fracture of cross-linked UHMWPE acetabular liners. Biomaterials 30(29):5572ā€“5582

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Muratoglu OK, Bragdon CR, Oā€™Connor DO, Jasty M, Harris WH, Gul R, McGarry F (1999) Unified wear model for highly crosslinked Ultra-high Molecular Weight Polyethylenes (UHMWPE). Biomaterials 20(16):1463ā€“1470

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Pruitt LA (2005) Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 26(8):905ā€“915

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Lacoste J, Carlsson DJ (1992) Gamma-initiated, photo-initiated, and thermally-initiated oxidation of linear low-density polyethylene ā€“ a quantitative comparison of oxidation-products. J Polym Sci Part A Polym Chem 30(3):493ā€“500. https://doi.org/10.1002/pola.1992.080300316

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Shen J, Costa L, Xu Y, Cong Y, Cheng Y, Liu X, Fu J (2014) Stabilization of highly crosslinked ultra high molecular weight polyethylene with natural polyphenols. Polym Degrad Stab 105:197ā€“205

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Salvalaggio M, Bagatin R, Fornaroli M, Fanutti S, Palmery S, Battistel E (2006) Multi-component analysis of low-density polyethylene oxidative degradation. Polym Degrad Stab 91(11):2775ā€“2785

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Costa L, Luda MP, Trossarelli L (1997) Ultra high molecular weight polyethylene-II. Thermal-and photo-oxidation. Polym Degrad Stab 58:41ā€“54

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Costa L, Carpentieri I, Bracco P (2008) Post electron-beam irradiation oxidation of orthopaedic UHMWPE. Polym Degrad Stab 93(9):1695ā€“1703

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Costa L, Bracco P, del Prever EB, Luda MP, Trossarelli L (2001) Analysis of products diffused into UHMWPE prosthetic components in vivo. Biomaterials 22(4):307ā€“315

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. Oral E, Ghali BW, Neils A, Muratoglu OK (2012) A new mechanism of oxidation in ultrahigh molecular weight polyethylene caused by squalene absorption. J Biomed Mater Res B Appl Biomater 100B(3):742ā€“751. https://doi.org/10.1002/jbm.b.32507

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Fu J, Doshi BN, Oral E, Muratoglu OK (2013) High temperature melted, radiation cross-linked, vitamin E stabilized oxidation resistant UHMWPE with low wear and high impact strength. Polymer 54(1):199ā€“209

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. Shen J, Liu X, Fu J (2014) Effect of squalene absorption on oxidative stability of highly crosslinked UHMWPE stabilized with natural polyphenols. Polym Degrad Stab 110:113ā€“120

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Fu J, Shen J, Gao G, Xu Y, Hou R, Cong Y, Cheng Y (2013) Natural polyphenol-stabilised highly crosslinked UHMWPE with high mechanical properties and low wear for joint implants. J Mater Chem B 1(37):4727ā€“4735

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Oral E, Ghali BW, Neils A, Muratoglu OK (2012) A new mechanism of oxidation in ultrahigh molecular weight polyethylene caused by squalene absorption. J Biomed Mater Res Part B Appl Biomater 100B(3):742ā€“751

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, J. (2019). Natural Polyphenol-Stabilized Highly Cross-Linked UHMWPE for Joint Implants. In: Fu, J., Jin, ZM., Wang, JW. (eds) UHMWPE Biomaterials for Joint Implants. Springer Series in Biomaterials Science and Engineering, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6924-7_4

Download citation

Publish with us

Policies and ethics