Skip to main content

Wear and Diagnostic Analysis of Clinical Failures of Artificial Hip Joints

  • Chapter
  • First Online:
UHMWPE Biomaterials for Joint Implants

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 13))

Abstract

Wear is an important factor in the life of artificial joint prosthesis. This chapter mainly describes the wear mechanism of artificial hip joints, the definition of wear life criteria, causes of abnormal wear, and clinical manifestations of wear failure and establishes an analytical procedure for assessing failure incidents. The clinical manifestations of the wear failure are classified through a wear-osteolysis morphological matrix. The procedure for assessing failure causes is established through a clinical investigation. Nine types of clinical manifestations of wear failure were found. Primary wear processes in artificial hip joints include boundary and mixed friction, adhesive, ploughing, and third-body (abrasive) wear. Surface quality, fit clearance between the acetabular cup and the femoral head, and roundness greatly affect the early abnormal wear. The diversity of clinical manifestations of wear failure is the morphological result of mechanical wear and osteolysis, which is helpful for assessing failure incidents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Affatato S, Brando D (2013) Introduction to wear phenomena of orthopaedic implants. In: Wear of orthopaedic implants & artificial joints, pp 3–26. https://doi.org/10.1533/9780857096128.1.3

    Chapter  Google Scholar 

  2. Bhushan B (1999) Definition and history of tribology. Principles and applications of tribology. Ind Lubr Tribol 98:635

    Google Scholar 

  3. Brown SS, Clarke IC (2006) A review of lubricant conditions for wear simulation in artificial hip joint replacements. Tribol Trans 49:72–78

    Article  CAS  Google Scholar 

  4. Cao SF, Mischler S (2016) Assessment of a recent tribocorrosion model for wear of metal-on-metal hip joints: Comparison between model predictions and simulator results. Wear 362–363:170–178

    Article  Google Scholar 

  5. Kennedy FE (2013) Biomechanics of the hip and knee: implant wear. In: Wear of orthopaedic implants & artificial joints, pp 56–92

    Google Scholar 

  6. Wang CT (2009) Tribology problems in natural and artificial joint. J Med Biomech 24:317–325

    CAS  Google Scholar 

  7. Jin ZM, Medley JB, Dowson D (2003) Fluid film lubrication in artificial hip joints. Proc 29th Leeds-Lyon Symp Tribol 211:237–256

    Google Scholar 

  8. Jin ZM, Tipper JL, Stone MH et al (2010) Hip Joints: Artificial-biotribology of bearings and biological response of wear debris. In: Webster JG (ed) Encyclopedia of medical devices and instrumentation. John Wiley & Sons Inc, Somerset, pp 514–525

    Google Scholar 

  9. Wang CT, Wang YL, Chen QL et al (1990) Calculation of elasto-hydrodynamic lubrication film thickness for hip prostheses during normal walking. Tribol Trans 33:239–245

    Article  Google Scholar 

  10. Dowson D (2001) New joints for the Millennium: wear control in total replacement hip joints. Proc Inst Mech Eng H J Eng Med 215:335–358

    Article  CAS  Google Scholar 

  11. Medley JB, Bobyn JD, Krygier JJ et al (2001) Elastohydrodynamic lubrication and wear of metal-on-metal hip implants. In: Rieker C et al (eds) World tribology forum in arthroplasty. HansHuber, Bern, pp 125–136

    Google Scholar 

  12. Wang CT (2008) Human biotribology. Science Press, Beijing

    Google Scholar 

  13. Vassiliou K, Elfick A, Scholes S et al (2006) The effect of ‘running–in’ on the tribology and surface morphology of metal–on–metal BHR device in simulator studies. Proc Inst Mech Eng H J Eng Med 220:269–277

    Article  CAS  Google Scholar 

  14. Su YL, Yang PR, Fu ZL et al (2010) Elastohydrodynamic lubrication analysis of artificial knee joint line contact under the condition of gait. Tribology 30:80–87

    CAS  Google Scholar 

  15. Su YL, Yang PR, Wang CT (2010) A full numerical analysis of elastohydrodynamic lubrication in knee prosthesis under walking condition. J Mech Med 10:621–641

    Article  Google Scholar 

  16. Bozic KJ, Kurtz SM, Lau E et al (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg 91:128–133

    Article  Google Scholar 

  17. Bergmann G, Deuretzbacher G, Heller M et al (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  CAS  Google Scholar 

  18. Rydell NW (1966) Forces acting on the femoral head-prosthesis: a study on strain gauge supplied prostheses in living persons. Doctoral thesis, University of Gothenburg, Sweden

    Google Scholar 

  19. Ries MD, Scott NK, Jani S (2001) Relationship between gravimetric wear and particle generation in hip simulators: conventional compared with cross-linked polyethylene. J Bone Joint Surg 83A:116–122

    Article  Google Scholar 

  20. Ulrich SD, Seyler TM, Bennett D et al (2008) Total hip arthroplasties: what are the reasons for revision? Int Orthopaed (SICOT) 32:597–604

    Article  Google Scholar 

  21. Affatato S, Spinelli M, Zavalloni M et al (2008) Tribology and total hip joint replacement: current concepts in mechanical simulation. Med Eng Phys 30:1305–1317

    Article  CAS  Google Scholar 

  22. Mattei L, Di Puccio F, Piccigallo B et al (2011) Lubrication and wear modelling of artificial hip joints: a review. Tribol Int 44:532–549

    Article  Google Scholar 

  23. Kang I, Galvin AL, Jin ZM et al (2006) A simple fully integrated contact-coupled wear prediction for ultra-high molecular weight polyethylene hip implants. Proc Inst Mech Eng H J Eng Med 220:33–46

    Article  CAS  Google Scholar 

  24. MacDonald SJ, Hanssen AD (2004) Metal-on-metal total hip arthroplasty: the concerns. Clin Orthop Relat Res 429:86–93

    Article  Google Scholar 

  25. Mikhael MM, Hanssen SD, Sierra RJ (2009) Failure of metal-on-metal total hip arthroplasty mimicking hip infection: a report of two cases. J Bone Joint Surg 91:443–446

    Article  Google Scholar 

  26. Sieber H-P, Rieker CB, Kottig P (1999) Analysis of 118 second-generation metal-on-metal retrieved hip implants. J Bone Joint Surg 81:46–50

    Article  CAS  Google Scholar 

  27. Fisher J, Jin ZM, Tipper J et al (2006) Tribology of alternative bearings. Clin Orthop Relat Res 453:25–34

    Article  Google Scholar 

  28. Williams S, Schepers A, Isaac G et al (2007) Ceramic-on-metal hip arthroplasties: a comparative in vitro and in vivo study. Clin Orthop Relat Res 465:23–32

    Article  Google Scholar 

  29. Collier JP, Sutula LC, Currier BH et al (1996) Overview of polyethylene as a bearing material: comparison of sterilization methods. Clin Orthop Relat Res 333:76–86

    Article  Google Scholar 

  30. Currier BH, Currier JH, Collier JP et al (1997) Shelf life and in vivo duration. Impacts on performance of tibial bearings. Clin Orthop Relat Res 342:111–122

    Article  Google Scholar 

  31. Citters DWV (2012) Failure analysis of orthopaedic implants. In: Wear of orthopaedic implants & artificial joints, pp 377–402

    Google Scholar 

  32. Blanchet TA, Burroughs B (2001) Numerical oxidation model for gamma radiation-sterilized UHMWPE: consideration of dose-depth profile. J Biomed Mater Res 58:684–693

    Article  CAS  Google Scholar 

  33. Van Citters DW (2003) Fatigue failure of UHMWPE: the development and application of novel methods and devices. Master of science thesis, Dartmouth College, NH

    Google Scholar 

  34. Currier BH, Currier JH, Collier JP et al (2007) In vivo oxidation of gamma-barrier sterilized UHMWPE bearings. J Arthroplast 22:721–731

    Article  Google Scholar 

  35. Sutula LC, Collier JP, Saum K et al (1995) Impact of gamma sterilization on clinical performance of polyethylene in the hip. Clin Orthop Relat Res 319:28–40

    Google Scholar 

  36. Fisher J (2009) Tribological and wear problems in joint replacement. Sino-British Symposium on Tribological Performance Test of Artificial Joint in Tianjin, China, 2009

    Google Scholar 

  37. Leslie IJ, Williams S, Isaac G et al (2009) High cup angle and microseparation increase the wear of hip surface replacements. Clin Orthop Relat Res 467:2259–2265

    Article  Google Scholar 

  38. Williams S, Leslie I, Isaac G et al (2008) Tribology and wear of metal-on-metal hip prostheses: influence of cup angle and head position. J Bone Joint Surg 90:111–117

    Article  Google Scholar 

  39. Morlock MM, Bishop N, Zustin J et al (2008) Modes of implant failure after hip resurfacing: morphological and wear analysis of 267 retrieval specimens. J Bone Joint Surg 90:89–95

    Article  Google Scholar 

  40. Dumbleton JH, Manley MT, Edidin AA (2002) A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplast 17:649–661

    Article  Google Scholar 

  41. Schmalzried TP, Jasty M, Harris WH (1992) Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg 74:849–863

    Article  CAS  Google Scholar 

  42. Schwarz EM, Benz EB, Lu AP et al (2000) Quantitative small-animal surrogate to evaluate drug efficacy in preventing wear debris-induced osteolysis. J Orthop Res 18:849–855

    Article  CAS  Google Scholar 

  43. Merkel KD, Erdmann JM, McHugh KP et al (1999) Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol 154:203–210

    Article  CAS  Google Scholar 

  44. Mao YQ, Zhu ZA, Tang TT et al (2006) The difference of macrophage response to polyethylene and titanium alloy particles. J Shanghai Jiaotong Univ 26:476–479

    CAS  Google Scholar 

  45. Mao YQ, Zhu ZA, Tang TT et al (2006) Experimental study of the effect of ultra-high molecular weight polyethylene particles on macrophages. Chin J Surg 44:852–855

    Google Scholar 

  46. Magone K, Luckenbill D, Goswami T (2015) Metal ions as inflammatory initiators of osteolysis. Arch Orthop Trauma Surg 135:683–695

    Article  Google Scholar 

  47. Callaghan JJ, Rosenberg AG, Rubash HE (2007) The adult. Hip 2:1505–1506

    Google Scholar 

  48. Gallo J, Goodman SB, Konttinen YT et al (2012) Particle disease: biological mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun 19:1–12

    Google Scholar 

  49. Grosse S, Haugland HK, Lilleng P et al (2014) Wear particles and ions from cemented and uncemented titanium-based hip prostheses-a histological and chemical analysis of retrieval material. J Biomed Mater Res Part B Appl Biomater 103:709–717

    Article  Google Scholar 

  50. Ingham E, Fisher J, Stone MH (2003) Wear of historical polyethylenes in total hip prostheses. Biomechanical success and biological failure. Hip Int 13:17–27

    Article  CAS  Google Scholar 

  51. Cadosch D, Chan E, Gautschi OP et al (2009) Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening-current concepts. J Biomed Mater Res A 91A:1252–1262

    Article  CAS  Google Scholar 

  52. Baxter RM, Freeman TA, Kurtz SM et al (2011) Do tissues from the revision of highly crosslinked uhmwpe liners contain wear debris and associated inflammation? Clin Orthop Relat Res® 469(8):2308

    Article  Google Scholar 

  53. Purdue PE, Koulouvaris NBJ et al (2006) The central role of wear debris in periprosthetic osteolysis. HSS J 2:102

    Article  Google Scholar 

  54. Green TR, Fisher J, Stone M et al (1998) Polyethylene particles of a ‘critical size’ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 19:2297–2302

    Article  CAS  Google Scholar 

  55. Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26:1271–1286

    Article  CAS  Google Scholar 

  56. Hatton A, Nevelos JE, Metthews JB et al (2003) Effects of clinically relevant alumina ceramic wear particles on TNF-A production by human peripheral blood mononuclear phagocytes. Biomaterials 24:1193–1204

    Article  CAS  Google Scholar 

  57. Hanawa T (2004) Metal ion release from metal implants. Mater Sci Eng C 24:745–752

    Article  Google Scholar 

  58. Wang CT, Jin ZM, Liao GS et al (2012) Wear analysis and diagnostic reasoning on clinical failure of artificial hip joints. J Med Biomech 27:361–368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Wu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, JW., Yang, H., Wang, CT., Jin, ZM., Dai, KR. (2019). Wear and Diagnostic Analysis of Clinical Failures of Artificial Hip Joints. In: Fu, J., Jin, ZM., Wang, JW. (eds) UHMWPE Biomaterials for Joint Implants. Springer Series in Biomaterials Science and Engineering, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6924-7_10

Download citation

Publish with us

Policies and ethics