Skip to main content

Immunomodulatory Potential of Phytochemicals: Recent Updates

  • Chapter
  • First Online:
Phytochemistry: An in-silico and in-vitro Update

Abstract

Phytochemicals perform wide array of functions related to plant physiology. Beside these they are often being used as therapeutics for prevention or cure of wide range of human diseases. Phytochemicals considered being exciting metabolites since ages as they play significant role in maintain good health through balanced nutrition and immune homeostasis. Various phytochemicals obtained from different parts of plant comprises of tremendous anti-oxidant, anti-inflammatory, anti-cancerous, neuro- protective and cardio protective properties. Beside these they are often being used as therapeutics for prevention or cure of wide range of human diseases. Easy and specific delivery as well as the bioavailability of phytochemicals considered to be important factors to get benefits of phytochemicals. Recent in vitro and in vivo studies have uncovered the molecular functions of several phytochemicals. Their role in modulating humoral as well as cell mediated immune system has been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldini R, Micucci M, Cevenini M, et al. Anti-inflammatory effect of phytosterols in experimental murine colitis model: prevention, induction, remission study. PLoS One. 2014;9(9):e108112.

    PubMed  PubMed Central  Google Scholar 

  • Aqil F, Munagala R, Jeyabalan J, et al. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 2013;334(1):133–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Bueso-Ramos C, Aggarwal BB. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-κB, cyclooxygenase 2, and matrix metalloprotease. Cancer Res. 2002;62:4945–54.

    CAS  PubMed  Google Scholar 

  • Banerjee S, Ji C, Mayfield JE, Goel A, et al. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc Natl Acad Sci U S A. 2018;115(32):8155–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbieri R, Coppo E, Marchese A, et al. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res. 2017;196:44–68.

    CAS  PubMed  Google Scholar 

  • Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. Biotech. 2013;3(6):439–59.

    Google Scholar 

  • Bernabeu E, Cagel M, Lagomarsino E, et al. Paclitaxel: what has been done and the challenges remain ahead. Int J Pharm. 2017;526(1–2):474–95.

    CAS  PubMed  Google Scholar 

  • Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol. 2010;11(5):705–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chahar MK, Sharma N, Dobhal MP. Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev. 2011;5(9):1.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YC, Lee TS, Chiang AN. Quercetin enhances ABCA1 expression and cholesterol efflux through a p38-dependent pathway in macrophages. J Lipid Res. 2012;53(9):1840–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang SK, Alasalvar C, Shahidi F. Review of dried fruits: phytochemicals, antioxidant efficacies, and health benefits. J Funct Foods. 2016;21:113–32.

    CAS  Google Scholar 

  • Cherry JD, Olschowka JA, O’Banion MK. Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation. J Neuroinflammation. 2015;12:203.

    PubMed  PubMed Central  Google Scholar 

  • Chirumbolo S. Plant phytochemicals as new potential drugs for immune disorders and cancer therapy: really a promising path? J Sci Food Agric. 2012;92(8):1573–7.

    CAS  PubMed  Google Scholar 

  • Chuan LI, Jia Z, Yu-Jiao ZU, et al. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin J Nat Med. 2015;13(9):641.

    PubMed Central  Google Scholar 

  • Dancey J, Eisenhauer EA. Current perspectives on camptothecins in cancer treatment. Br J Cancer. 1996;74:327–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies DR, Mamat B, Magnusson OT, et al. Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography. J Med Chem. 2009;52(15):4694–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devappa RK, Rakshit SK, Dekker RF. Forest biorefinery: potential of poplar phytochemicals as value-added co-products. Biotechnol Adv. 2015;33(6):681–716.

    CAS  PubMed  Google Scholar 

  • Egert S, Rimbach G. Which sources of flavonoids: complex diets or dietary supplements? Adv Nutr. 2011;2(1):8–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuela M, Giuseppe C, Sonia C, et al. Vinca alkaloids and analogues as anti-cancer agents: looking back, peering ahead. Bioorg Med Chem Lett. 2018;28:2816–26.

    CAS  Google Scholar 

  • Epriliati I, Ginjom IR. Bioavailability of phytochemicals. In: Phytochemicals – a global perspective of their role in nutrition and health. Rijeka: InTech; 2012.

    Google Scholar 

  • Fechtner S, Singh A, Chourasia M. Molecular insights into the differences in anti-inflammatory activities of green tea catechins on IL-1β signaling in rheumatoid arthritis synovial fibroblasts. Toxicol Appl Pharmacol. 2017;329:112–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • George VC, Dellaire G, Rupasinghe HV. Plant flavonoids in cancer chemoprevention: role in genome stability. J Nutr Biochem. 2017;45:1–14.

    CAS  PubMed  Google Scholar 

  • Goldyne ME, Burrish GF, Poubelle P. Arachidonic acid metabolism among human mononuclear leukocytes. Lipoxygenase-related pathways. J Biol Chem. 1984;259(14):8815–9.

    CAS  PubMed  Google Scholar 

  • González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci. 2017;10:427.

    PubMed  PubMed Central  Google Scholar 

  • Haeggström JZ. Leukotriene biosynthetic enzymes as therapeutic targets. J Clin Invest. 2018;128(7):2680–90.

    PubMed  PubMed Central  Google Scholar 

  • Hevener KE, Verstak TA, Lutat KE. Recent developments in topoisomerase targeted cancer chemotherapy. Acta Pharmaceutica Sinica B. 2018;8(6):844–61.

    PubMed  PubMed Central  Google Scholar 

  • Hoensch HP, Weigmann B. Regulation of the intestinal immune system by flavonoids and its utility in chronic inflammatory bowel disease. World J Gastroenterol. 2018;24(8):877–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol. 2008;19(2):73–82.

    CAS  PubMed  Google Scholar 

  • Huang M, Lu JJ, Huang MQ. Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs. 2012;21(12):1801–18.

    CAS  PubMed  Google Scholar 

  • Iqbal J, Abbasi BA, Mahmood T. Plant-derived anticancer agents: a green anticancer approach. Asian Pac J Trop Biomed. 2017;7:1129–50.

    Google Scholar 

  • Isah T. Anticancer alkaloids from trees: development into drugs. Pharmacogn Rev. 2016;10(20):90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jana NR, Dikshit P, Goswami A, et al. Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem. 2004;279(12):11680–5.

    CAS  PubMed  Google Scholar 

  • Kim HP, Son KH, Chang HW, et al. Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci. 2004;96(3):229–45.

    CAS  PubMed  Google Scholar 

  • Kim YS, Jeong HY, Kim AR, et al. Natural product derivative BIO promotes recovery after myocardial infarction via unique modulation of the cardiac microenvironment. Sci Rep. 2016;6:30726.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyama R. Estrogenic terpenes and terpenoids: pathways, functions and applications. Eur J Pharmacol. 2017;815:405–15.

    CAS  PubMed  Google Scholar 

  • Kuo PL, Hsu YL, Chang CH, et al. The mechanism of ellipticine-induced apoptosis and cell cycle arrest in human breast MCF-7 cancer cells. Cancer Lett. 2005;223(2):293–301.

    CAS  PubMed  Google Scholar 

  • Langhorst J, Varnhagen I, Schneider SB, et al. Randomised clinical trial: a herbal preparation of myrrh, chamomile and coffee charcoal compared with mesalazine in maintaining remission in ulcerative colitis – a double-blind, double-dummy study. Aliment Pharmacol Ther. 2013;38:490–500.

    CAS  PubMed  Google Scholar 

  • Larussa T, Imeneo M, Luzza F. Potential role of nutraceutical compounds in inflammatory bowel disease. World J Gastroenterol. 2017;23(14):2483–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Las Heras B, Rodriguez B, Bosca L, Villar AM. Terpenoids: sources, structure elucidation and therapeutic potential in inflammation. Curr Top Med Chem. 2003;3(2):171–85.

    Google Scholar 

  • Le Marchand L. Cancer preventive effects of flavonoids – a review. Biomed Pharmacother. 2002;56(6):296–301.

    PubMed  Google Scholar 

  • Leitzmann C. Characteristics and health benefits of phytochemicals. Complement Med Res. 2016;23(2):69–74.

    Google Scholar 

  • Lin ZY, Kuo CH, Wu DC, et al. Anticancer effects of clinically acceptable colchicine concentrations on human gastric cancer cell lines. Kaohsiung J Med Sci. 2016;32(2):68–73.

    PubMed  Google Scholar 

  • Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr. 2003;78(3):517S–20S.

    CAS  PubMed  Google Scholar 

  • López-Lázaro M, Calderón-Montaño JM, Burgos-Morón E. Green tea constituents (-)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I- and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide. Mutagenesis. 2011;26(4):489–98.

    PubMed  Google Scholar 

  • Lou JR, Zhang XX, Zheng J, et al. Transient metals enhance cytotoxicity of curcumin: potential involvement of the NF-kappaB and mTOR signaling pathways. Anticancer Res. 2010;30(9):3249–55.

    CAS  PubMed  Google Scholar 

  • Man SM. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol. 2018;15(12):721–37. https://doi.org/10.1038/s41575-018-0054-1.

    Article  CAS  PubMed  Google Scholar 

  • Martino E, Della Volpe S, Terribile E, et al. The long story of camptothecin: from traditional medicine to drugs. Bioorg Med Chem Lett. 2017;27(4):701–7.

    CAS  PubMed  Google Scholar 

  • Matsuura HN, Fett-Neto AG. Plant alkaloids: main features, toxicity, and mechanisms of action. In: Plant toxins. Dordrecht: Springer; 2017. p. 243–61.

    Google Scholar 

  • McCubrey JA, Lertpiriyapong K, Steelman LS, et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY). 2017;9(6):1477.

    CAS  Google Scholar 

  • Molyneux RJ, Lee ST, Gardner DR, et al. Phytochemicals: the good, the bad and the ugly? Phytochemistry. 2007;68(22–24):2973–85.

    CAS  PubMed  Google Scholar 

  • Moudi M, Go R, Yien CYS, et al. Vinca alkaloids. Int J Prev Med. 2013;4(11):1231.

    PubMed  PubMed Central  Google Scholar 

  • Mozaffarian D, Wu JHY. Flavonoids, dairy foods, and cardiovascular and metabolic health: a review of emerging biologic pathways. Circ Res. 2018;122(2):369–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nabholtz JM, Gligorov J. The role of taxanes in the treatment of breast cancer. Expert Opin Pharmacother. 2005;6(7):1073–94.

    CAS  PubMed  Google Scholar 

  • Nirmala MJ, Samundeeswari A, Sankar PD. Natural plant resources in anti-cancer therapy-a review. Res Plant Biol. 2011;1(3):1–14.

    Google Scholar 

  • Oka Y, Iwai S, Amano H, et al. Tea polyphenols inhibit rat osteoclast formation and differentiation. J Pharmacol Sci. 2012;118(1):55–64.

    CAS  PubMed  Google Scholar 

  • Pan Y, Zhang F, Zhao Y. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer. J Cancer. 2017;8(9):1679.

    PubMed  PubMed Central  Google Scholar 

  • Patlolla JMR, Rao CV. Triterpenoids for cancer prevention and treatment: current status and future prospects. Curr Pharm Biotechnol. 2012;13(1):147–55.

    CAS  PubMed  Google Scholar 

  • Pizzolato JF, Saltz LB. The camptothecins. Lancet. 2003;361(9376):2235–42.

    CAS  PubMed  Google Scholar 

  • Raza SS, Khan MM, Ahmad A, et al. Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke. Neuroscience. 2013;230:157–71.

    CAS  PubMed  Google Scholar 

  • Rolin D. Metabolomics coming of age with its technological diversity, vol. 67. Oxford: Academic; 2012.

    Google Scholar 

  • Romagnolo DF, Selmin OI. Flavonoids and cancer prevention: a review of the evidence. J Nutr Gerontol Geriatr. 2012;31(3):206–38.

    PubMed  Google Scholar 

  • Safarzadeh E, Shotorbani SS, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull. 2014;4(Suppl 1):421.

    PubMed  PubMed Central  Google Scholar 

  • Saqib U, Sarkar S, Suk K, et al. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget. 2018;9(25):17937–50.

    PubMed  PubMed Central  Google Scholar 

  • Sies H, Schewe T, Heiss C, et al. Cocoa polyphenols and inflammatory mediators. Am J Clin Nutr. 2005;81(1):304S–12S.

    CAS  PubMed  Google Scholar 

  • Sirois P, Saura C, Salari H, et al. Comparative effects of etodolac, indomethacin, and benoxaprofen on icosanoid biosynthesis. Inflammation. 1984;8(4):353–6.

    CAS  PubMed  Google Scholar 

  • Siu D. Natural products and their role in cancer therapy. Med Oncol. 2011;28(3):888–900.

    CAS  PubMed  Google Scholar 

  • Song Y, Dou H, Gong W, et al. Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur J Pharmacol. 2013;705:49–60.

    CAS  PubMed  Google Scholar 

  • Surh Y-J. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;10:768–80.

    Google Scholar 

  • Suzuki K, Yahara S, Hashimoto F, et al. Inhibitory activities of (-)-epigallocatechin-3-O-gallate against topoisomerases I and II. Biol Pharm Bull. 2001;24(9):1088–90.

    CAS  PubMed  Google Scholar 

  • Takimoto CH, Wright J, Arbuck SG. Clinical applications of the camptothecins. Biochim Biophys Acta (BBA)-Gene Struct Expr. 1998;1400(1–3):107–19.

    CAS  Google Scholar 

  • Thoppil RJ, Bishayee A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J Hepatol. 2011;3(9):228.

    PubMed  PubMed Central  Google Scholar 

  • Tomicic MT, Kaina B. Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors. Biochim Biophys Acta (BBA)-Rev Cancer. 2013;1835(1):11–27.

    CAS  Google Scholar 

  • Vasanthi HR, ShriShriMal N, Das DK. Phytochemicals from plants to combat cardiovascular disease. Curr Med Chem. 2012;19(14):2242–51.

    CAS  PubMed  Google Scholar 

  • Wang W, Hu Y. Small molecule agents targeting the p53-MDM2 pathway for cancer therapy. Med Res Rev. 2012;32(6):1159–96.

    CAS  PubMed  Google Scholar 

  • Wang G, Tang W, Bidigare RR. Terpenoids as therapeutic drugs and pharmaceutical agents. In: Natural products. Totowa: Humana Press; 2005. p. 197–227.

    Google Scholar 

  • Wang S, Meckling KA, Marcone MF, et al. Can phytochemical antioxidant rich foods act as anti-cancer agents? Food Res Int. 2011;44(9):2545–54.

    CAS  Google Scholar 

  • Wang S, Su R, Nie S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem. 2014;25(4):363–76.

    CAS  PubMed  Google Scholar 

  • Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25(18):2677–81.

    PubMed  PubMed Central  Google Scholar 

  • Westerterp M, Gautier EL, Ganda A, et al. Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity. Cell Metab. 2017;25(6):1294–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Yang Z, Zhou C, et al. Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol Adv. 2016;34(4):343–53.

    CAS  PubMed  Google Scholar 

  • Yang H, Ping Dou Q. Targeting apoptosis pathway with natural terpenoids: implications for treatment of breast and prostate cancer. Curr Drug Targets. 2010;11(6):733–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Xu S, Qian Y, et al. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav Immunol. 2017;64:162–72.

    CAS  Google Scholar 

  • Zhu Y, Li X, Chen J, et al. The pentacyclic triterpene Lupeol switches M1 macrophages to M2 and ameliorates experimental inflammatory bowel disease. Int Immunopharmacol. 2016;30:74–84.

    CAS  PubMed  Google Scholar 

  • Ziegler RG, Colavito EA, Hartge P, et al. Importance of α-carotene, β-carotene, and other phytochemicals in the etiology of lung cancer. J Natl Cancer Inst. 1996;88(9):612–5.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, N., Dhekne, H.S., Senapati, S. (2019). Immunomodulatory Potential of Phytochemicals: Recent Updates. In: Kumar, S., Egbuna, C. (eds) Phytochemistry: An in-silico and in-vitro Update. Springer, Singapore. https://doi.org/10.1007/978-981-13-6920-9_8

Download citation

Publish with us

Policies and ethics