Skip to main content

In-silico Methods of Drug Design: Molecular Simulations and Free Energy Calculations

  • Chapter
  • First Online:
Phytochemistry: An in-silico and in-vitro Update

Abstract

The main aim of in silico drug design approaches is to take the best chemical substances to wet laboratory investigation through the reduction of cost and last stage attrition. In silico drug design approaches can utilize natural products and their semi-synthetic derivatives as starting material for discovery/design of small molecule drugs. The application of computers and computational approaches help in all areas of drug discovery and create the core of structure-based drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo O, Ambrose Z, T Flaherty P, Aamer H, Jain P, V Sambasivarao S. Identification of HIV inhibitors guided by free energy perturbation calculations. Curr Pharm Des. 2012;18(9):1199–216.

    Article  CAS  Google Scholar 

  • Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev. 2006;26(5):531–68.

    Article  CAS  PubMed  Google Scholar 

  • Barlow DH, Nock M, Hersen M. Single case experimental designs: strategies for studying behavior for change. Boston: Pearson/Allyn and Bacon; 2009.

    Google Scholar 

  • Bleicher KH, Böhm H-J, Müller K, Alanine AI. A guide to drug discovery: hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov. 2003;2(5):369.

    Article  CAS  PubMed  Google Scholar 

  • Borhani DW, Shaw DE. The future of molecular dynamics simulations in drug discovery. J Comput Aided Mol Des. 2012;26(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  • Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol. 2009;5(11):789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandsdal BO, Österberg F, Almlöf M, Feierberg I, Luzhkov VB, Åqvist J. Free energy calculations and ligand binding. Adv Protein Chem. 2003;66:123–58.. Elsevier

    Article  CAS  PubMed  Google Scholar 

  • Buntrock RE. ChemOffice ultra 7.0. J Chem Inf Comput Sci. 2002;42(6):1505–6.

    Article  CAS  PubMed  Google Scholar 

  • Carlsson J, Åqvist J. Calculations of solute and solvent entropies from molecular dynamics simulations. Phys Chem Chem Phys. 2006;8(46):5385–95.

    Article  CAS  PubMed  Google Scholar 

  • Changeux JP, Edelstein S. Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol Rep. 2011;3:1–15.

    Google Scholar 

  • Chen J, Brooks CL III, Khandogin J. Recent advances in implicit solvent-based methods for biomolecular simulations. Curr Opin Struct Biol. 2008;18(2):140–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS. Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol. 2011;21(2):150–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chodera JD, Pande VS. The social network (of protein conformations). Proc Nat Acad Sci. 2011;108(32):12969–70.

    Article  CAS  Google Scholar 

  • de Amorim HL, Caceres RA, Netz PA. Linear interaction energy (LIE) method in lead discovery and optimization. Curr Drug Targets. 2008;9(12):1100–5.

    Google Scholar 

  • Damale MG, Harke SN, Kalam Khan FA, Shinde DB, Sangshetti JN. Recent advances in multidimensional QSAR (4D-6D): a critical review. Mini Rev Med Chem. 2014;14(1):35–55.

    Article  CAS  PubMed  Google Scholar 

  • Debnath AK. Pharmacophore mapping of a series of 2, 4-diamino-5-deazapteridine inhibitors of Mycobacterium avium complex dihydrofolate reductase. J Med Chem. 2002;45(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  • Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des. 2006;20(10–11):647–71.

    Article  CAS  PubMed  Google Scholar 

  • Durrant JD, McCammon JA. Molecular dynamics simulations and drug discovery. BMC Biol. 2011;9(1):71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen MY, et al. Comparative protein structure modeling using Modeller. Curr Protocol Bioinforma. 2006;15(1):5.6. 1–5.6. 30.

    Article  Google Scholar 

  • Ferreira L, dos Santos R, Oliva G, Andricopulo AJM. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genheden S, Ryde U. A comparison of different initialization protocols to obtain statistically independent molecular dynamics simulations. J Comput Chem. 2011;32(2):187–95.

    Article  CAS  Google Scholar 

  • Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guner OF. Pharmacophore perception, development, and use in drug design. La Jolla: International University Line; 2000. p. 29.

    Google Scholar 

  • Harvey MJ, De Fabritiis G. High-throughput molecular dynamics: the powerful new tool for drug discovery. Drug Discov Today. 2012;17(19–20):1059–62.

    Article  CAS  PubMed  Google Scholar 

  • Homeyer N, Stoll F, Hillisch A, Gohlke H. Binding free energy calculations for lead optimization: assessment of their accuracy in an industrial drug design context. J Chem Theory Comput. 2014;10(8):3331–44.

    Article  CAS  PubMed  Google Scholar 

  • Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model. 2010;51(1):69–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iman M, Saadabadi A, Davood A. Molecular docking analysis and molecular dynamics simulation study of ameltolide analogous as a sodium channel blocker. Turk J Chem. 2015;39(2):306–16.

    Article  CAS  Google Scholar 

  • Jaworska J, Nikolova-Jeliazkova N, Aldenberg T. QSAR applicability domain estimation by projection of the training set descriptor space: a review. Altern Lab Anim. 2005;33(5):445.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303(5665):1813–8.

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal A, Lukacova V, Comez D, Kroll DM, Raha S, Balaz S. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J Med Chem. 2005;48(17):5437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935.

    Article  CAS  PubMed  Google Scholar 

  • Klabunde T, Hessler G. Drug design strategies for targeting G-protein-coupled receptors. Chembiochem. 2002;3(10):928–44.

    Article  CAS  PubMed  Google Scholar 

  • Kuntz ID. Structure-based strategies for drug design and discovery. Science. 1992;257(5073):1078–82.

    Article  CAS  PubMed  Google Scholar 

  • Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001;6(7):357–66.

    Article  CAS  PubMed  Google Scholar 

  • Lill MA. Multi-dimensional QSAR in drug discovery. Drug Discov Today. 2007;12(23–24):1013–7.

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–41.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010;38(suppl_2):W609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchand-Geneste N, Watson KA, Alsberg BK, King RD. New approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase B inhibitors. J Med Chem. 2002;45(2):399–409.

    Article  CAS  PubMed  Google Scholar 

  • Medina-Franco JL, López-Vallejo F, Kuck D, Lyko F. Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers. 2011;15(2):293–304.

    Article  CAS  PubMed  Google Scholar 

  • Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel J, Essex JW. Prediction of protein–ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J Comput Aided Mol Des. 2010;24(8):639–58.

    Article  CAS  PubMed  Google Scholar 

  • Mobley DL, Dill KA. Binding of small-molecule ligands to proteins:“what you see” is not always “what you get”. Structure. 2009;17(4):489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortier A, Faria JP, Correia CM, Santerne A, Santos NC. BGLS: a Bayesian formalism for the generalised Lomb-Scargle periodogram. Astron Astrophys. 2015;573:1–6.

    Article  Google Scholar 

  • Nair PC, Malde AK, Drinkwater N, Mark AE. Missing fragments: detecting cooperative binding in fragment-based drug design. ACS Med Chem Lett. 2012;3(4):322–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair PC, Malde AK, Mark AE. Using theory to reconcile experiment: the structural and thermodynamic basis of ligand recognition by phenylethanolamine N-methyltransferase (PNMT). J Chem Theory Comput. 2011;7(5):1458–68.

    Article  CAS  PubMed  Google Scholar 

  • Nair PC, Miners JO. Molecular dynamics simulations: from structure function relationships to drug discovery. In Silico Pharmacol. 2014;2(1):1–4.

    Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raut R, Beesetti H, Tyagi P, Khanna I, Jain SK, Jeankumar VU, et al. A small molecule inhibitor of dengue virus type 2 protease inhibits the replication of all four dengue virus serotypes in cell culture. Virol J. 2015;12(1):16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl. 2009;48(7):1198–229.

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Bast F. Multitargeted molecular docking study of plant-derived natural products on phosphoinositide-3 kinase pathway components. Med Chem Res. 2014;23(4):1690–700.

    Article  CAS  Google Scholar 

  • Singh P, Bast F. High-throughput virtual screening, identification and in vitro biological evaluation of novel inhibitors of signal transducer and activator of transcription 3. Med Chem Res. 2015a;24(6):2694–708.

    Article  CAS  Google Scholar 

  • Singh P, Bast F. Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro. Investig New Drugs. 2015b;33(3):575–93.

    Article  CAS  Google Scholar 

  • Singh P, Bast F. Screening of multi-targeted natural compounds for receptor tyrosine kinases inhibitors and biological evaluation on cancer cell lines, in silico and in vitro. Med Oncol. 2015c;32(9):233.

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Bast F, Singh R. Natural compounds targeting transforming growth factor-β: in silico and in vitro study. Elect J Biol. 2016;13:6–13.

    Google Scholar 

  • Singh P, Kumar S, Bast F. Natural compounds are smart players in context to anticancer potential of receptor tyrosine kinases: an in silico and in vitro advancement. In: Wei DQ, Ma Y, Cho W, Xu Q, Zhou F, editors. Translational bioinformatics and its application. Dordrecht: Springer; 2017. p. 177–202.

    Chapter  Google Scholar 

  • Tao H, Chu ZT, Warshel A. Quantitative studies of ligand-receptor interactions: a rapid evaluation of binding free energies of endothiapepsin to its inhibitors. Pac Symp Biocomput. 1996:752–5.

    Google Scholar 

  • Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem. 2006;49(11):3315–21.

    Article  CAS  PubMed  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–18.

    Article  CAS  Google Scholar 

  • Vogt AD, Di Cera E. Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry. 2012;51(30):5894–902.

    Article  CAS  PubMed  Google Scholar 

  • Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design-a review. Curr Top Med Chem. 2010;10(1):95–115.

    Article  CAS  PubMed  Google Scholar 

  • Zhang M-Q, Wilkinson B. Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol. 2007;18(6):478–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Central University of Punjab, Bathinda, Punjab, (India) and Director in-charge, National Institute of Pathology, New Delhi (India) for supporting this study with infrastructural requirements. This study was also supported by a Centenary-Post Doctoral Research Fellowship Grant-in-Aid from the Indian Council of Medical Research (ICMR), Government of India awarded to PS.

Conflict of Interest

The authors declare that no financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ezebuo, F.C., Kushwaha, P.P., Singh, A.K., Kumar, S., Singh, P. (2019). In-silico Methods of Drug Design: Molecular Simulations and Free Energy Calculations. In: Kumar, S., Egbuna, C. (eds) Phytochemistry: An in-silico and in-vitro Update. Springer, Singapore. https://doi.org/10.1007/978-981-13-6920-9_28

Download citation

Publish with us

Policies and ethics