Skip to main content

In-vitro Models in Anticancer Screening

  • Chapter
  • First Online:
Phytochemistry: An in-silico and in-vitro Update

Abstract

Cancer is one of the major life threatening diseases worldwide. Tumor cells have undergone various genetic and epigenetic alterations thereby making them markedly different from the normal cells. These underlying changes are the cause for cancer development, progression, and drug resistance. An in vitro model system which mimics the in vivo cancer is essential to study the various genetic, epigenetic and biochemical changes and also for screening anticancer drugs. The implications of in vitro tumor models in cancer research have been appreciated from early 1900s. The ease of maintenance and the simplicity in manipulation to develop high throughput assay have catapulted in vitro tumor models to the fore front of cancer research. The advancement in 3D cell culture, tumor cell biology, biomaterials, microfabrication and tissue engineering has enabled the diversification of in vitro tumor models to cater to specific applications. Moreover, further advances in these areas will help in creating specialized tumor models which will be used for personalized therapies for cancer. Here, we review the development and use of various in vitro model systems that have contributed in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aherne W, Garrett M, McDonald E, Workman P. Mechanism based high throughput screening for novel anticancer drug discovery. Anticancer Drug Des. 2002;249:67.

    Google Scholar 

  • Amudha G, Josephine A, Mythili Y, Sundarapandiyan R, Varalakshmi P. Therapeutic efficacy of dl-α-lipoic acid on cyclosporine A induced renal alteration. Eur J Pharmacol. 2007;571:209–14.

    Article  CAS  Google Scholar 

  • Amundson SA, Do KT, Vinikoor LC, Lee RA, Koch-Paiz CA, Ahn J, Reimers M, Chen Y, Scudiero DA, Weinstein JN, Trent JM. Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen. Cancer Res. 2008;68:415–24.

    Article  CAS  Google Scholar 

  • Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, Reddy A. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603.

    Article  CAS  Google Scholar 

  • Blatt NL, Mingaleeva RN, Khaiboullina SF, Kotlyar A, Lombardi VC, Rizvanov AA. In vivo screening models of anticancer drugs. Life Sci J. 2013;10:1892.

    Google Scholar 

  • Chumsri S, Phatak P, Edelman MJ, Khakpour N, Hamburger AW, Burger AM. Cancer stem cells and individualized therapy. Cancer Genomics Proteomics. 2007;4:165–74.

    CAS  PubMed  Google Scholar 

  • Damia G, D’Incalci M. Contemporary pre-clinical development of anticancer agents–what are the optimal preclinical models? Eur J Cancer. 2009;45:2768–81.

    Article  CAS  Google Scholar 

  • Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 1997;57:1829–34.

    CAS  PubMed  Google Scholar 

  • Decker S, Hollingshead M, Bonomi CA, Carter JP, Sausville EA. The hollow fibre model in cancer drug screening: the NCI experience. Eur J Cancer. 2004;40:821–6.

    Article  CAS  Google Scholar 

  • Dengler WA, Schulte J, Berger DP, Mertelsmann R, Fiebig HH. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anti-Cancer Drugs. 1995;6:522–32.

    Article  CAS  Google Scholar 

  • Fiebig HH, Schüler J, Bausch N, Hofmann M, Metz T, Korrat A. Gene signatures developed from patient tumor explants grown in nude mice to predict tumor response to 11 cytotoxic drugs. Cancer Genomics Proteomics. 2007;4:197–209.

    CAS  PubMed  Google Scholar 

  • Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4:309.

    Article  CAS  Google Scholar 

  • Gottfried E, Kunz-Schughart LA, Andreesen R, Kreutz M. Brave little world: spheroids as an in vitro model to study tumor-immune-cell interactions. Cell Cycle. 2006;5:691–5.

    Article  CAS  Google Scholar 

  • Grinter SZ, Liang Y, Huang SY, Hyder SM, Zou X. An inverse docking approach for identifying new potential anti-cancer targets. J Mol Graph Model. 2011;29:795–9.

    Article  CAS  Google Scholar 

  • Gutman RL, Peacock G, Lu DR. Targeted drug delivery for brain cancer treatment. J Control Release. 2000;65:31–41.

    Article  CAS  Google Scholar 

  • Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH. Integrating genetic approaches into the discovery of anticancer drugs. Science. 1997;278:1064–8.

    Article  CAS  Google Scholar 

  • Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148:3–15.

    Article  CAS  Google Scholar 

  • Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol. 2016;4:12.

    Article  Google Scholar 

  • Koch TM, Münster S, Bonakdar N, Butler JP, Fabry B. 3D traction forces in cancer cell invasion. PLoS One. 2012;7:e33476.

    Article  CAS  Google Scholar 

  • Konstantopoulos K, Wu PH, Wirtz D. Dimensional control of cancer cell migration. Biophys J. 2013;104:279.

    Article  CAS  Google Scholar 

  • Kumar S, Bajaj S, Bodla RB. Preclinical screening methods in cancer. Indian J Pharm. 2016;48:481.

    Article  Google Scholar 

  • McKeage MJ. The potential of DMXAA (ASA404) in combination with docetaxel in advanced prostate cancer. Expert Opin Investig Drugs. 2008;17:23–9.

    Article  CAS  Google Scholar 

  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  Google Scholar 

  • Mustata G, Li M, Zevola N, Bakan A, Zhang L, Epperly M, S Greenberger J, Yu J, Bahar I. Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Curr Top Med Chem. 2011;11:281–90.

    Article  CAS  Google Scholar 

  • Pappalardo M, Rayan M, Abu-Lafi S, Leonardi ME, Milardi D, Guccione S, Rayan A. Homology-based modeling of rhodopsin-like family members in the inactive state: structural analysis and deduction of tips for modeling and optimization. Mol Inform. 2017;36:1700014.

    Article  Google Scholar 

  • Prada-Gracia D, Huerta-Yépez S, Moreno-Vargas LM. Application of computational methods for anticancer drug discovery, design, and optimization. Bol Med Hosp Infant Mex (Engl Ed). 2016;73:411–23.

    Google Scholar 

  • Rygaard J, Poulsen CO. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol Microbiol Scand C. 1969;77:758–60.

    Article  CAS  Google Scholar 

  • Schwartsmann G, Winograd B, Pinedo HM. The main steps in the development of anticancer agents. Radiother Oncol. 1988;12:301–13.

    Article  CAS  Google Scholar 

  • Shahaf N, Pappalardo M, Basile L, Guccione S, Rayan A. How to choose the suitable template for homology modelling of GPCRs: 5-HT7 receptor as a test case. Mol Inform. 2016;35:414–23.

    Article  CAS  Google Scholar 

  • Shnyder SD, Hasan J, Cooper PA, Pilarinou E, Jubb E, Jayson GC, Bibby MC. Development of a modified hollow fibre assay for studying agents targeting the tumour neovasculature. Anticancer Res. 2005;25:1889–94.

    CAS  PubMed  Google Scholar 

  • Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6:813.

    Article  CAS  Google Scholar 

  • Suggitt M, Bibby MC. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res. 2005;11:971–81.

    CAS  PubMed  Google Scholar 

  • Teicher BA. In vivo/ex vivo and in situ assays used in cancer research: a brief review. Toxicol Pathol. 2009;37:114–22.

    Article  CAS  Google Scholar 

  • Tian H, Ip L, Luo H, Chang DC, Luo KQ. A high throughput drug screen based on fluorescence resonance energy transfer (FRET) for anticancer activity of compounds from herbal medicine. Br J Pharmacol. 2007;150:321–34.

    Article  CAS  Google Scholar 

  • Timmins N, Dietmair S, Nielsen L. Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis. 2004;7:97–103.

    Article  Google Scholar 

  • Wang XY, Pei Y, Xie M, Jin ZH, Xiao YS, Wang Y, Zhang LN, Li Y, Huang WH. An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells. Lab Chip. 2015;15:1178–87.

    Article  CAS  Google Scholar 

  • Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DA, Glennie MJ, Kelland LR. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102:1555.

    Article  CAS  Google Scholar 

  • Yang F, Hu M, Lei Q, Xia Y, Zhu Y, Song X, Li Y, Jie H, Liu C, Xiong Y, Zuo Z. Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model. Cell Death Dis. 2016;6:e1701.

    Article  Google Scholar 

Download references

Acknowledgments

DKC acknowledge Department of Microbiology, St. Mary’s College, Thrissur. AM acknowledges Origin Diagnostics and Research, Karunagappally. LSR acknowledge Institut Pasteur, Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi Shanker Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

K. C., D., Menon, A., Rai, L.S. (2019). In-vitro Models in Anticancer Screening. In: Kumar, S., Egbuna, C. (eds) Phytochemistry: An in-silico and in-vitro Update. Springer, Singapore. https://doi.org/10.1007/978-981-13-6920-9_13

Download citation

Publish with us

Policies and ethics