Skip to main content

Wheat Responses and Tolerance to UV-B Radiation: An Overview

  • Chapter
  • First Online:
Wheat Production in Changing Environments

Abstract

The elevated ultraviolet-B (UV-B, 290–315 nm) has sensitive alarm because it causes drastic effects on growth, photosynthesis, and crop yield. Globally, increased UV-B has a great challenge for production of wheat. Therefore, in this chapter, a brief attempt has been made to summarize the wheat responses and tolerance to UV-B radiation. Over the last two decades, most of the studies were on the mechanisms of UV-B tolerance along with the physiological, biochemical, and morphological responses of wheat plants to UV-B stress. The experimental results showed that ambient UV-B (aUV-B) and supplemental UV-B (sUV-B) radiations have adverse effects on growth of wheat crops such as shortening plant height, reducing leaf area, slowing physiological activity, and decreasing biomass and photosynthetic performance and yield. The perusal of literature recommended the enhanced UV-B irradiation lessens the production of crop yield via disturbing the number and weight of grains. The levels of superoxide radical (O2 . -) and hydrogen peroxide (H2O2) were enhanced by UV-B (ambient and supplemental) along with enhanced peroxidation of lipids (LPO) and electrolyte leakage. Wheat plants possess many protective and tolerance mechanisms to reduce the effect of oxidative stress caused by UV-B stress. In response to aUV-B and sUV-B, defense mechanisms get activated in the form of the increased superoxide dismutase, catalase, ascorbic acid, and guaiacol peroxidase activities, and all nonenzymatic antioxidants are found to increase in wheat. Enhanced and ambient UV-B radiation had harmful effects on photosynthetic parameters like photosystem II (Hill reaction, chlorophyll, chlorophyll a fluorescence, electron transport rate (ETR), and yield), thylakoid, and enzymes of the dark reaction like carbonic anhydrase (CA), ribulose bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC), malic dehydrogenase (MDH), and chlorophyllase in wheat. Inter- and intraspecific variations were observed in the susceptibility of wheat to UV-B which imply the potential efforts in breeding programs for improved tolerance to UV-B radiation. On the other hand, exclusion of solar UV-B from solar spectrum enhanced the growth, biomass, photosynthetic performance, and yield of wheat plants as compared to the ambient and enhanced UV-B.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbic acid peroxidase

AsA:

Ascorbic acid

CA:

Carbonic anhydrase

CAT:

Catalase

CFCs:

Chlorofluorocarbons

ETC:

Electron transport chain

GR:

Glutathione reductase

GSH:

Glutathione reduced

IAA:

Indole-3-acetic acid

MDA:

Malondialdehyde

MDH:

Malic dehydrogenase

NR:

Nitrate reductase

PAR:

Photosynthetically active radiation

PEPC:

Phosphoenolpyruvate carboxylase

POD:

Peroxidase

PPF:

Photosynthetic photon flux

RI:

Response index

ROS:

Reactive oxygen species

Rubisco:

Ribulose bisphosphate carboxylase/oxygenase

Si:

Silicon

SiNp:

Silicon nanoparticles

SNP:

Sodium nitroprusside

References

  • Agrawal SB, Rathore D (2007) Changes in oxidative stress defense system in wheat (Triticum aestivum L.) and mung bean (Vigna radiata L.) cultivars grown with and without mineral nutrients and irradiated by supplemental ultraviolet-B. Environ Exp Bot 59:21–33

    Article  CAS  Google Scholar 

  • Agrawal SB, Rathore D, Singh A (2004) Combined effects of enhanced UV-B radiation and additional nutrients on two cultivars of wheat (Triticum aestivum L.). Physiol Mol Biol Plants 10:99–108

    CAS  Google Scholar 

  • Al-Oudat M, Baydoun SA, Mohammad A (1998) Effects of enhanced UV-B on growth and yield of two Syrian crops wheat (Triticum durum, var. Horani) and broad beans (Vicia faba) under field conditions. Environ Exp Bot 40:11–16

    Article  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Allen DJ, Nogues S, Morison JIL, Greenslade PD, McLeod AR, Baker NR (1999) A thirty percent increase in UV-B has no impact on photosynthesis in well-watered and droughted pea plants in the field. Glob Chang Biol 5:235–244

    Article  Google Scholar 

  • Ambasht NK, Agrawal M (2003) Interactive effects of ozone and ultraviolet-B singly and in combination on physiological and biochemical characteristics of soybean plants. J Plant Biol 30:37–45

    Google Scholar 

  • Bacelara E, Moutinho-Pereiraa J, Ferreiraa H, Correiaa C (2015) Enhanced ultraviolet-B radiation affect growth, yield and physiological processes on triticale plants. Procedia Environ Sci 29:219–220

    Article  Google Scholar 

  • Barnes PW, Flint SD, Caldwell MM (1990) Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. Am J Bot 77:1354–1360

    Article  Google Scholar 

  • Becwar MR, Moore FD, Burke MJ (1982) Effects of deletion and enhancement of ultraviolet-B (280–315 nm) radiation on plants grown at 3000 m elevation. J Am Soc HortSci 107:771–774

    Google Scholar 

  • Berli FJ, Bottini R (2013) UV-B and abscisic acid effects on grape berry maturation and quality. J Berry Res 3:1–14

    CAS  Google Scholar 

  • Blankenship RE (2002) Molecular mechanism of photosynthesis. Blackwell Science, Oxford

    Book  Google Scholar 

  • Borman JF (1989) Target sites of UV-B radiation in photosynthesis of higher plant. J Photochem Photobiol B Biol 4:145–158

    Article  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol 43:83–116

    Article  CAS  Google Scholar 

  • Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 102:18225–18230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderini DF, Lizana XC, Hess S, Jobet CR (2008) Grain yield and quality of wheat under increased ultraviolet radiation (UV-B) at later stages of the crop cycle. J Agric Sci 146:57–64

    Article  Google Scholar 

  • Caldwell MM, Teramura AH, Tevini M, Bornman JF, Bjorn LO, Kulandaivelu G (1995) Effects of increased solar ultraviolet radiation on terrestrial plants. Ambio 24:166–173

    Google Scholar 

  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobiol Sci 6:252–266

    Article  CAS  PubMed  Google Scholar 

  • Carolina LX, Susan H, Daniel CF (2009) Crop phenology modifies wheat responses to increased UV-B radiation. Agric For Meteorol 149:1964–1974

    Article  Google Scholar 

  • Casati P, Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132:1739–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer S, Scagliusi SM, Da Silva PR, Wiethölter P, Tor-res GAM, Lau EY, Consoli L (2013) The importance for food security of maintaining rust resistance in wheat. Food Sec 5:157–176

    Article  Google Scholar 

  • Chen H, Han R (2014) He-Ne laser treatment improves the photosynthetic efficiency of wheat exposed to enhanced UV-B radiation. Laser Phys 24:105602. https://doi.org/10.1088/1054-660X/24/10/105602

    Article  CAS  Google Scholar 

  • Correia CM, Areal ELV, Torres-Pereira MS, Torres-Pereira JMG (1999) Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions – II. Physiological and biochemical aspects. Field Crop Res 62:97–105

    Article  Google Scholar 

  • Correia CM, Coutinho JF, Bjorn LO, Torres PJMG (2000) Ultraviolet-B radiation and nitrogen effects on growth and yield of maize under Mediterranean field conditions. Eur J Agron 12:117–125

    Article  CAS  Google Scholar 

  • Correia CM, Pereira JMM, Coutinho JF, Bjorn LO, Torres-Pereira JMG (2005) Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize: an Mediterranean field study. Eur J Agron 22:337–347

    Article  CAS  Google Scholar 

  • Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164:354–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czégény G, Mátai A, Hideg É (2016) UV-B effects on leaves-Oxidative stress and acclimation in controlled environments. Plant Sci 248:57–63

    Article  PubMed  CAS  Google Scholar 

  • Dai QJ, Peng SB, Chavez AQ, Vergara BS (1994) Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation. Environ Exp Bot 34:433–442

    Article  Google Scholar 

  • Dai Q, Peng S, Chavez AQ, Vergara BS, Peng S, Ingram KT, Neue HU, Ziska LH (1995) Effect of enhanced ultraviolet-B radiation on growth and production of rice under greenhouse and field conditions. In: Peng S, Ingram KT, Neue HU (eds) Climate change and Rice. Springer-Verlag, Berlin, pp 189–198

    Chapter  Google Scholar 

  • Day TA, Ruhland CT, Grobe CW, Xiong F (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119:24–35

    Article  CAS  PubMed  Google Scholar 

  • Dohler G, Worrest RC, Biermann I, Zink J (1987) Photosynthetic 14CO2 fixation and (15N)-amino assimilation during UV-B radiation of Lithodesmium variable. Physiol Plant 70:511–515

    Article  Google Scholar 

  • Doughty JC, Hope AB (1973) Effects of ultraviolet radiation on the membranes of Chara coralline. J Membr Biol 13:185–197

    Article  CAS  Google Scholar 

  • Enghiad A, Ufer D, Countryman AM, Thilmany DD (2017) An overview of global wheat market fundamentals in an era of climate concerns. Int J Agron 2017:3931897. https://doi.org/10.1155/2017/3931897

    Article  Google Scholar 

  • FAO (2018) Food outlook – biannual report on global food markets –November 2018, Rome. 104 pp. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Feng H, Allen DJ, Gitz DC (2003) The effect of enhanced ultraviolet-B radiation on growth, photosynthesis and stable carbon isotope composition (d13C) of two soybean cultivars (Glycine max) under field conditions. Environ Exp Bot 49:1–8

    Article  CAS  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation and signaling. J Exp Bot 58:2339–2358

    Article  CAS  PubMed  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants balancing damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaberscik A, Voncina M, Trost T, Germ M, Bjorn LO (2002) Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient and enhanced UV-B radiation. J Photochem Photobiol B Biol 66:30–42

    Article  CAS  Google Scholar 

  • Greenberg BM, Wilson MI, Huang XD, Duxbury CL, Gerhardt KE, Gensemer RW (1997) The effects of ultraviolet-B radiation on higher plants. In: Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. CRC Press, Lewis/Boca Raton/New York, pp 1–35

    Google Scholar 

  • Hakala K, Jauhiainen L, Hoskela T, Kayhko P, Vorne V (2002) Sensitivity of crops to increased ultraviolet radiation in northern growing conditions. J Agron Crop Sci 188:8–18

    Article  Google Scholar 

  • He J, Hung LK, Chow WS, Whitecross MR, Anderson JM (1993) Effect of supplementary UV-B radiation on rice and pea plants. Aust J Plant Physiol 20:129–142

    Google Scholar 

  • He J, Huang LK, Whitecross MI (1994) Chloroplast ultrastructure changes in Pisum sativum associated with supplementary ultraviolet (UV-B) radiation. Plant Cell Environ 17:771–775

    Article  Google Scholar 

  • He LL, Zu YQ, Li Y, Wu YS (2006) Intraspecific differences in physiological responses of different wheat cultivars to enhanced UV-B radiation. Chin J Appl Ecol 17:153–165

    Google Scholar 

  • He L, Gao Z, Li R (2009) Pre-treatment of seed with H2O2 enhances drought tolearence of wheat (Triticum aestivum L.) seedlings. African J Biotech 8:6151–6157

    Google Scholar 

  • He L, Xiaoyun J, Zhiqiang G, Runzhi L (2011) Genotype-dependent responses of wheat (Triticum aestivum L) seedlings to drought, UV-B radiation and their combined stresses. Afr J Biotechnol 10:4046–4056

    CAS  Google Scholar 

  • Hideg E, Nagy T, Oberschall A, Dudits D, Vass I (2003) Detoxification function of aldose/aldehyde reductase during drought and ultraviolet-B (280–320 nm) stresses. Plant Cell Environ 26:513–522

    Article  CAS  Google Scholar 

  • Hidema J, Kumagai T (2006) Sensitivity of rice to ultraviolet-B radiation. Ann Bot 97:933–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins L, Hewitt EJ, Mark U (2002) Ultraviolet-B radiation reduces the rates of cell division and elongation in the primary leaf wheat (Triticum aestivum L cv Maris Huntsman). Plant Cell Environ 25:617–624

    Article  Google Scholar 

  • Huang SB, Dai QJ, Liu XZ (1998) Influence of supplemental ultraviolet-B radiation on IAA and ABA content in the leaves of rice. Chin Bull Bot 15:87–90

    Google Scholar 

  • Ibrahim MM, Alsahli AA, Al-Ghamdi AA (2013) Cumulativeabiotic stresses and their effect on the antioxidant defense system in two species of wheat, Triticum durum desf and Triticum aestivum L. Arch Biol Sci 65:1423–1433

    Article  Google Scholar 

  • Jain K, Kataria S, Guruprasad KN (2004) Oxyradicals under UV-B stress and their quenching by antioxidants. Indian J Exp Biol 42:884–892

    CAS  PubMed  Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Article  Google Scholar 

  • Jansen MA, Noort RE, Tan MY, Prinsen E, Lagrimini LM, Thorneley RN (2001) Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet-B radiation stress. Plant Physiol 126:1012–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan BR, He J, Chow WS, Anderson JM (1992) Changes in mRNA levels and polypeptide subunits of ribulose-1,5-bisphosphate carboxylase in response to supplementary ultraviolet-B radiation. Plant Cell Environ 15:91–98

    Article  CAS  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol 120:191–218

    Article  Google Scholar 

  • Kalbina I, Strid A (2006) The role of NADPH oxidase and MAP kinase phosphatase in UV-B-dependent gene expression in Arabidopsis. Plant Cell Environ 29:1783–1793

    Article  CAS  PubMed  Google Scholar 

  • Kanungo M, Dubey A, Kataria S (2013) Solar UV-B and UV-A/B exclusion affects growth and antioxidant enzymes in cucumber and wheat. Indian J Plant Sci 2:63–72

    Google Scholar 

  • Kataria S, Guruprasad KN (2012) Solar UV-B and UV-A/B exclusion effects on intraspecific variations in crop growth and yield of wheat varieties. Field Crop Res 125:8–13

    Article  Google Scholar 

  • Kataria S, Guruprasad KN (2015) Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties. Plant Physiol Biochem 97:400–411

    Article  CAS  PubMed  Google Scholar 

  • Kataria S, Jain K, Guruprasad KN (2007) UV-B induced changes in antioxidant enzymes and their isoforms in cucumber (Cucumis sativus L) cotyledons. Indian J Biochem Biophys 44:31–37

    CAS  PubMed  Google Scholar 

  • Kataria S, Guruprasad KN, Ahuja S, Singh B (2013) Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants. Photochem Photobiol B Biol 127:140–152

    Article  CAS  Google Scholar 

  • Kataria S, Jajoo A, Guruprasad KN (2014) Impact of increasing ultraviolet-B (UV-B) radiation on photosynthetic processes. J Photochem Photobiol B Biol 137:55–66

    Article  CAS  Google Scholar 

  • Kong L, Wang F, Si J, Feng B, Zhang B, Li S, Wang Z (2014) Increasing in ROS levels and callose deposition in peduncle vascular bundles of wheat (Triticum aestivum L) grown under nitrogen deficiency. J Plant Interact 8:109–116

    Article  CAS  Google Scholar 

  • Lantican MA, Dubin HJ, Morris MLS (2005) Impacts of international wheat breeding research in the developing world 1988–2002. CIMMYT, Mexico

    Google Scholar 

  • Li Y, Yue M, Wang XL (1998) Effects of enhanced ultraviolet-B radiation on crop structure, growth and yield components of spring wheat under field conditions. Field Crop Res 57:253–263

    Article  Google Scholar 

  • Li Y, Zu YQ, Chen HY, Chen JJ, Yang JL, Hu ZD (2000a) Intraspecific responses in crop growth and yield of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions. Field Crop Res 67:25–33

    Article  Google Scholar 

  • Li Y, Zu YQ, Chen JJ, Chen HY, Yang JL, Hu ZD (2000b) Intraspecific differences in physiological responses of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions. Environ Exp Bot 44:95–103

    Article  CAS  Google Scholar 

  • Li Y, Zu YQ, Chen JJ, Chen HY (2002) Intraspecific responses in crop growth and yield of 20 soybean cultivars to enhanced ultraviolet-B radiation under field conditions. Field Crop Res 78:1–8

    Article  Google Scholar 

  • Li Y, He LL, Zu YQ (2010) Intraspecific variation in sensitivity to ultraviolet-B radiation in endogenous hormones and photosynthetic characteristics of 10 wheat cultivars grown under field conditions. S Afr J Bot 76:493–498

    Article  CAS  Google Scholar 

  • Lin WX, Wu XC, Liang KJ, Guo YC, He HQ, Chen FY, Liang YY (2002) Effect of enhanced UV-B radiation on polyamine metabolism and endogenous hormone contents in rice (Oryza sativa L). Chin J Appl Ecol 13:807–813

    CAS  Google Scholar 

  • Li JT, Qiu ZB, Zhang XW, Wang LS (2011) Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol Plant 33:835–842

    Article  CAS  Google Scholar 

  • Liu FF, Chen HZ, Han R (2015) The effects of He-Ne laser and enhanced ultraviolet-B radiation on proliferating-cell nuclear antigen in wheat seedlings. Am J Plant Sci 6:1206–1214

    Article  CAS  Google Scholar 

  • Lizana XC, Hess S, Calderinni DF (2009) Crop phenology modifies wheat responses to increased UV-B radiation. Agric For Meteorol 149:1964–1974

    Article  Google Scholar 

  • Mackerness SAH, Jordan BR (1999) Changes in gene expression in response to ultraviolet B-induced stress. In: Pessarakli M (ed) Handbook of plant and crop stress, 2nd edn. Marcel Dekker, New York, pp 749–768

    Google Scholar 

  • Mackerness SAH, Thomas B, Jordan BR (1997) The effect of supplementary ultraviolet-B radiation on mRNA transcripts, translation and stability of chloroplast proteins and pigment formation in Pisum sativum L. J Exp Bot 48:729–738

    Article  CAS  Google Scholar 

  • Mackerness SAH, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  Google Scholar 

  • Mazza CA, Battista D, Zima AM, Szwarcberg-Bracchitta M, Giordano CV, Acevedo A, Scopel AL, Ballare CL (1999) The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses. Plant Cell Environ 22:61–70

    Article  CAS  Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Ilyas M, Madronich S (2011) Ozone depletion and climate change, impacts on UV radiation. Photochem Photobiol Sci 10:182–198

    Article  CAS  PubMed  Google Scholar 

  • Melis A, Nemson JA, Harrison MA (1992) Damage to functional components and partial degradation of photosystem II reaction center proteins upon chloroplast exposure to ultraviolet-B radiation. Biochim Biophys Acta 1100:312–320

    Article  CAS  Google Scholar 

  • Ming Y, Yuan L, Xunling W (1998) Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field conditions. Environ Exp Bot 40:187–196

    Article  Google Scholar 

  • Mishra AK, Rai R, Agrawal SB (2013) Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defense system. Indian J Biochem Biophys 50:139–149

    CAS  PubMed  Google Scholar 

  • Moussa HR, Khodary SDK (2008) Changes in growth and 14CO2 fixation of Hordeum vulgare and Phaseolus vulgaris induced by UV-B radiation. J Agric Soc Sci 4:59–64

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Ou S, Lu S, Yan S (2018) Effects of enhanced UV-B radiation on the content of flavonoids in mesophyll cells of wheat. Imaging Radiat Res 1:1. https://doi.org/10.24294/irr.v1i1.369

    Article  Google Scholar 

  • Pal M, Zaidi PH, Voleti SR, Raj A (2006) Solar UV-B exclusion effect on growth and photosynthetic characteristics of wheat and pea. J New Seeds 8:19–34

    Article  Google Scholar 

  • Predieri S, Krizek DT, Wang CY, Mirecki RM, Zimmerman RH (1993) Influence of UV-B radiation on developmental changes, ethylene, CO2 flux and polyamines in cv Doyenne d’hiver pear shoots grown in vitro. Physiol Plant 87:109–117

    Article  CAS  Google Scholar 

  • Rahaie M, Xue GP, Schenk PM (2013) The role of transcription factors in wheat under different abiotic stresses. In: Vahdati K, Leslie C (eds) Abiotic stress – plant responses and applications in agriculture. InTech, Rijeka, pp 367–385

    Google Scholar 

  • Ran H, Chen H, Han R (2018) Effect of enhanced UV-B radiation on wheat seedling roots. Pak J Bot 50:1415–1421

    CAS  Google Scholar 

  • Rao A, Ahmad SD, Sabir SM, Awan SI, Shah AH, Abbas SR, Shafique S, Khan F, Chaudhary A (2013) Potential antioxidant activities improve salt tolerance in ten varieties of wheat (Triticum aestivum L). Am J Plant Sci 4:69–76

    Article  CAS  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  PubMed  Google Scholar 

  • Robson TM, Klem K, Urban O, Jansen MAK (2015) Reinterpreting plant morphological responses to UV-B radiation. Plant Cell Environ 38:856–866

    Article  CAS  PubMed  Google Scholar 

  • Ros J, Tevini M (1995) Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower. J Plant Physiol 146:295–302

    Article  CAS  Google Scholar 

  • Sahoo A, Sarkar S, Singh RP, Kafatos M, Summers ME (2005) Declining trend of total ozone column over the northern parts of India. Int J Remote Sens 26:3433–3440

    Article  Google Scholar 

  • Salmon S, Maziere JC, Santus R, Morliere P, Bouchemal N (1990) UVB-induced photoperoxidation of lipids of human low and high-density lipoproteins. A possible role of tryptophan residues. Photochem Photobiol 52:541–545

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Chatterjee S, Kataria S, Joshi J, Datta S, Vairale MG, Veer V (2017) A review on responses of plants to UV-B radiation related stress. In: Singh VP, Singh S, Prasad SM, Parihar P (eds) UV-B radiation: from environmental stressor to regulator of plant growth. Wiley, New York, pp 75–97

    Chapter  Google Scholar 

  • Sharma S, Kataria S, Joshi J, Guruprasad KN (2018) Antioxidant defense response of fenugreek to solar UV. Int J Veg Sci. https://doi.org/10.1080/19315260.2018.1466844

    Article  Google Scholar 

  • Singh M, Singh S, Agrawal SB (2012) Intraspecific responses of six cultivars of wheat (Triticum aestivum L) to supplemental ultraviolet-B radiation under field conditions. Acta Physiol Plant 34:65–74

    Article  CAS  Google Scholar 

  • Singh VP, Kumar J, Singh S, Prasad SM (2014) Dimethoate modifies enha UV-B effects on growth, photosynthesis and oxidative stress in mung bean (Vigna radiata L) seedlings: implication of salicylic acid. Pestic Biochem Physiol 116:13–23

    Article  CAS  PubMed  Google Scholar 

  • Strid A, Chow WS, Anderson JM (1990) Effect of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. Biochim Biophys Acta 1020:260–268

    Article  CAS  Google Scholar 

  • Strid A, Chow WS, Anderson JM (1994) UV-B damage and protection at the molecular level in plants. Photosynth Res 39:475–489

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JH, Teramura AH, Ziska LH (1992) Variation in UV-B sensitivity in plants from a 3,000 m elevational gradient in Hawaii. Am J Bot 79:737–743

    Article  Google Scholar 

  • Teramura AH (1980) Effects of ultraviolet-B irradiances on soybean: importance of photosynthetically active radiation in evaluating ultraviolet-B irradiance effects on soybean and wheat growth. Physiol Plant 48:333–339

    Article  Google Scholar 

  • Teramura AH (1983) Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol Plant 58:415–427

    Article  CAS  Google Scholar 

  • Teramura AH, Sullivan JH, Ziska LH (1990) Interaction of elevated ultraviolet-B radiation and CO2 on productivity and photosynthetic characteristics in wheat, rice, and soybean. Plant Physiol 94:470–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teramura AH, Ziska LH, Sztein AE (1991) Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol Plant 83:373–380

    Article  CAS  Google Scholar 

  • Tian X, Lei Y (2007) Physiological responses of wheat seedlings to drought and UV-B radiation effect of exogenous sodium nitroprusside application. Russ J Plant Physiol 54:676–682

    Article  CAS  Google Scholar 

  • Tosserams M, De P, Sa AL, Rozema J (1996) The effect of solar UV radiation on four plant species occurring in a coastal grassland vegetation in the Netherlands. Physiol Plant 97:731–749

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2016) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  PubMed  CAS  Google Scholar 

  • UNEP (2008) Environmental effects of ozone depletion and its interactions with climate change: progress report, 2007. Photochem Photobiol Sci 7:15–27

    Article  Google Scholar 

  • Varga B, Janda T, Laszlo E, Veisz O (2012) Influence of abiotic stresses on the antioxidant enzyme activity of cereals. Acta Physiol Plant 34:849–858

    Article  CAS  Google Scholar 

  • Visser AJ, Tosserams M, Groen MW, Magendans GWH, Rozema J (1997) The combined effects of CO2 concentration and solar UVB radiation on faba bean grown in open-top chambers. Plant Cell Environ 20:189–199

    Article  CAS  PubMed  Google Scholar 

  • Vu CV, Allen LH, Garrard LA (1982) Effects of supplemental UV-B radiation on primary photosynthetic carboxylating enzymes and soluble proteins in leaves of C3 and C4 crop plants. Physiol Plant 55:11–16

    Article  CAS  Google Scholar 

  • Wang C, He D, Zheng Y (2003a) At present, the impact of UV-B on wheat growth and yield in near-surface UV radiation. J Agric Environ Sci 22:147–149

    Google Scholar 

  • Wang C, Zheng Y, Gao W, Slusser JR, He D (2003b) Responses of winter wheat growth and production under subambient UV-B irradiance. In: Ultraviolet ground-and space-based measurements, models, and effects II, vol 4896. International Society for Optics and Photonics, Bellingham, pp 219–223

    Chapter  Google Scholar 

  • Wang ZY, Li FM, Xiong YC, Xu BC (2008) Soil-water threshold range of chemical signals and drought tolerance was mediated by ROS homeostasis in winter wheat during progressive soil drying. J Plant Growth Regul 27:309–319

    Article  CAS  Google Scholar 

  • Weatherhead B, Tanskanen A, Stevermer A (2005) Factors affecting surface ultraviolet radiation levels in the Arctic. In: Symon C (ed) Arctic climate impact assessment. Cambridge University Press, New York

    Google Scholar 

  • Yang JH, Chen T, Wang XL (2000) Effect of enhanced UV-B radiation on endogenous ABA and free proline contents in wheat leaves. Acta Ecol Sin 20:39–42

    Google Scholar 

  • Yang H, Zhao ZG, Qiang WY, An LZ, Xu SJ, Wang XL (2004) Effects of enhanced UV-B radiation on the hormonal contents of vegetative and reproductive tissues of two tomato cultivars and their relationships with reproductive characteristics. Plant Growth Regul 43:251–258

    Article  CAS  Google Scholar 

  • Yao XQ, Liu Q (2007) Changes in photosynthesis and antioxidant defenses of Picea asperata seedlings to enhanced ultraviolet-B and to nitrogen supply. Physiol Plant 129:364–374

    Article  CAS  Google Scholar 

  • Yao X, Chu J, Ba C (2010) Responses of wheat roots to exogenous selenium supply under enhanced ultraviolet-B. Biol Trace Elem Res 137:244–252

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Chu J, He X, Ba C (2011) Protective role of selenium in wheat seedlings subject to enhanced UV-B radiation. Russian J Plant Physiol 58:283–289

    Article  CAS  Google Scholar 

  • Yao X, Chu J, He X, Si C (2014) Grain yield, starch, protein, and nutritional element concentrations of winter wheat exposed to enhanced UV-B during different growth stages. J Cereal Sci 60:31–36

    Article  CAS  Google Scholar 

  • Yuan L, Ming Y, Xunling W (1998) Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field conditions. Environ Exp Bot 40:187–196

    Article  Google Scholar 

  • Yue M, Li Y, Wang X (1998) Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field conditions. Environ Exp Bot 40:187–196

    Article  CAS  Google Scholar 

  • Zheng Y, Gao W, Slusser JR, Grant RH, Wang C (2002) Yield and yield formation of winter wheat in response to enhanced solar ultraviolet-B radiation. In: Ultraviolet ground-and space-based measurements, models, and effects, vol 4482. International Society for Optics and Photonics, Bellingham, pp 335–341

    Chapter  Google Scholar 

  • Zheng Y, Gao W, Slusser JR, Grant RH, Wang C (2003) Yield and yield formation of field winter wheat in response to supplemental solar ultraviolet-B radiation. Agric For Meteorol 120:279–283

    Article  Google Scholar 

  • Zhu P, Yang L (2015) Ambient UV-B radiation inhibits the growth and physiology of Brassica napus L. on the Qinghai-Tibetan plateau. Field Crop Res 171:79–85

    Article  Google Scholar 

  • Zu YQ, Li Y, Chen JJ, Chen HY (2004) Intraspecific responses in grain quality of 10 wheat cultivars to enhanced ultraviolet-B radiation under field conditions. J Photochem Photobiol B Biol 74:95–100

    Article  CAS  Google Scholar 

  • Zu YG, Pang HH, Yu JH, Li DW, Wei XX, Gao YX, Tong L (2010) Responses in the morphology, physiology and biochemistry of Taxus chinensis var mairei grown under supplementary UV-B radiation. J Photochem Photobiol B Biol 98:152–158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by Department of Science and Technology Women Scientists-A Scheme (SR/WOS-A/LS-17/2017-G) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kataria, S., Jain, M., Kanungo, M., Sharma, S. (2019). Wheat Responses and Tolerance to UV-B Radiation: An Overview. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_8

Download citation

Publish with us

Policies and ethics