Skip to main content

Physiological Responses of Wheat to Environmental Stresses

  • Chapter
  • First Online:
Book cover Wheat Production in Changing Environments

Abstract

Economy of several tropical countries is regulated by productivity of wheat, which is the major staple crop. High temperature stress, salinity, osmotic stress, heavy metals, UV radiations, etc. are among major abiotic stresses that have detrimental effects on the yield of wheat. Morphological studies revealed that heavy metal, high temperature, excess light, salinity, nanoparticles, and UV stress caused a decline in plant growth, germination rate, root and shoot length, and seed filling stages in wheat plants. Biochemical and physiological studies have shown that abiotic stresses have inhibitory effect on photosynthetic active reaction centers, linear electron transport, oxygen-evolving complex, membrane integrity, and generation of reactive oxygen species (ROS). Nanoparticles, in particular, alter mineral nutrition, cause oxidative stress, and induce genotoxicity in crops and show a negative impact. However, if they are used in lower concentrations, they enhance plant productivity and crop yield. This chapter summarizes a comprehensive updated review on overall physiological responses of wheat plants to various abiotic stresses and the protective mechanisms prevailing in the plants for protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem 72:35–45

    Article  CAS  PubMed  Google Scholar 

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    Article  PubMed  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    Article  CAS  PubMed  Google Scholar 

  • Al-Othman ZA, Ali R, Al-Othman AM, Ali J, Habila MA (2016) Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources. Arab J Chem 9:1555–1562

    Article  CAS  Google Scholar 

  • Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  PubMed  CAS  Google Scholar 

  • Arzani A, Ashraf M (2017) Cultivated ancient wheats (Triticum spp.): a potential source of health-beneficial food products. Compr Rev Food Sci Food Saf 16:477–488

    Article  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Athar R, Ahamad M (2002) Heavy metal toxicity: effect on plant growth and metal uptake by wheat and on free living azotobacter. Water Air Soil Pollut 138:165–180

    Article  CAS  Google Scholar 

  • Balla K, Karsai I, Bencze SZ, Kiss T, Veisz O (2013) Effect of heat stress on the physiological processes of wheat. Acta Agron Hung 61(1):1–12. https://doi.org/10.1556/AAgr.61.2013.1

    Article  CAS  Google Scholar 

  • Baunthiyal M, Ranghar S (2013) Accumulation of fluoride by plants: potential for phytoremediation clean. Soil Air Water 43:127–132

    Article  CAS  Google Scholar 

  • Bhullar SS, Jenner CF (1985) Differential responses to high temperatures of starch and nitrogen accumulation in the grain of four cultivars of wheat. Aust J Plant Physiol 12:363–375

    Google Scholar 

  • Borrell A, Hammer G, Van Oosterom E (2001) Stay-green: a consequence of the balance between supply and demand for nitrogen during grain filling? Ann Appl Biol 138:91–95

    Article  Google Scholar 

  • Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681

    Article  CAS  PubMed  Google Scholar 

  • Branquinho C, Brown DH, Catarino F (1997) The cellular location of cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environ Exp Bot 38:165–179

    Article  CAS  Google Scholar 

  • Brosche M, Fant C, Bergkvist SW, Strid H, Svensk A, Olsson O, Strid A (1999) Molecular markers for UV-B stress in plants: alterations of the expression of the four classes of genes in Pisum sativum and the formation of high molecular mass RNA adducts. Biochem Biophys Acta 1447:185–198

    CAS  PubMed  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antiox-idant system of chickpea seedlings. Toxicol Environ Chem 95:605–612

    Article  CAS  Google Scholar 

  • Cakirlar HC, Cicek N, Fedina I, Georgieva K, Dogru A, Velitchkova M (2008) NaCl induced cross-acclimation to UV-B radiation in four barley (Hordeum vulgare L.) cultivars. Acta Physiol Plant 30:561–567

    Article  CAS  Google Scholar 

  • Castronuovo D, Tataranni G, Lovelli S, Candido V, Sofo A, Scopa A (2014) UV-C irradiation effect on young tomato plant. Pak J Bot 46:945–949

    CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeckc F-W, Mazzucotelli E, Mastrangelo AM, Franciaa E, Marea C, Tondellia A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14

    Article  Google Scholar 

  • Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Cooke M, Dennis AJ (1983) Polycyclic aromatic hydrocarbons: formation, metabolism and measurement. Battelle Press Inc, Columbus

    Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture: not by affecting ATP synthesis. Trends Plant Sci 5:187–188

    Article  Google Scholar 

  • Darko E, Gierczik K, Hudak O, Forgoa P, Paal M, Tuerkoesi E, Kovcs V, Dulai S, Majlath I, Molnar I, Janda T, Molnar-Lang M (2017) Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLoS One 12:e0174170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11:e0156362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demirevska-Kepova K, Holzer R, Simova-Stoilova L, Feller U (2005) Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, rubisco binding protein and rubisco activase in wheat leaves. Biol Plant 49:521–525

    Article  CAS  Google Scholar 

  • Denyer K, Hylton CM, Smith AM (1994) The effect of high temperature on starch synthesis and the activity of starch synthase. Aust J Plant Physiol 21:783–789

    CAS  Google Scholar 

  • Dhote M, Kumarand A, Juwarkar A (2016) Petroleum contaminated oil sludge degradation by defined consortium: influence of biosurfactant production. Proc Natl Acad Sci India Sect B Biol Sci 88:517–523. https://doi.org/10.1007/s40011-016-0778-z

    Article  CAS  Google Scholar 

  • Dias AS, Lidon FC (2009) Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. J Agron Crop Sci 195:137–147

    Article  Google Scholar 

  • Dias A, Bagulho AS, Lidon FC (2008) Ultrastructue and biochemical traits of bread and durum wheat grains under heat stress. Braz J Plant Physiol 20:323–333

    Article  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Article  CAS  Google Scholar 

  • Dodd GL, Donovan LA (1999) Water potential and effects on germination and seedling growth of two cold desert shrubs. Am J Bot 86:1146–1153

    Article  CAS  PubMed  Google Scholar 

  • Dogaroglu ZG, Koleli N (2017) Effects of TiO2 and ZnO nanoparticles on germination and antioxidant system of wheat (Triticum aestivum L.). Appl Ecol Environ Res 15:1499–1510

    Article  Google Scholar 

  • Duan H, Zhu Y, Li J, Ding W, Wang H, Jiang L, Zhou Y (2017) Effects of drought stress on growth and development of wheat seedlings. Int J Agric Biol:1814–9596. https://doi.org/10.17957/IJAB/15.0393. (ISSN online)

    Article  CAS  Google Scholar 

  • Esfandiari E, Shekari F, Shekari F, Esfandiari M (2007) The effect of salt stress on antioxidant enzymes’ activity and lipid peroxidation on the wheat seedling. Not Bot Hort Agrobot Cluj-Napoca 35:49–56

    Google Scholar 

  • FAO (2011) Crop prospects and food situation. Food and agriculture organization, global information and early warning system, trade and markets division (EST). Rome

    Google Scholar 

  • FAO (2014) Food and agriculture organisation of the United Nations statistics division. www.Faostat3.fao.org/browse/q/*/e. Accessed on 2 July 2015

  • Farooq M, Wahid A, Ito O, Lee DJ, Siddique KHM (2009) Advances in drought resistance of rice. Crit Rev Plant Sci 28:199–217

    Article  CAS  Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:491–507

    Article  Google Scholar 

  • Farooq M, Hussain M, Siddique KHM (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33:331–349

    Article  CAS  Google Scholar 

  • Feng K, Nie X, Cui L, Deng P, Wang M, Song W (2017) Genome-wide identification and characterization of salinity stress-responsive miRNAs in wild emmer wheat (Triticum turgidum ssp. dicoccoides). Genes 8:156

    Article  PubMed Central  CAS  Google Scholar 

  • Ferris R, Ellis RH, Wheeler TR, Hadley P (1998) Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann Bot 82:631–639

    Google Scholar 

  • Fischer RA (1985) Number of kernels in wheat crops and the influence of solar radiation and temperature. J Agric Sci 105:447–461

    Article  Google Scholar 

  • Flexas J, Bota J, Loreta F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitation to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    Article  CAS  PubMed  Google Scholar 

  • Fokar M, Blum A, Nguyen HT (1998) Heat tolerance in spring wheat. II Grain filling. Euphytica 104:9–15

    Article  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants balancing damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its by products. Appl Ecol Environ Res 3:1–18

    Article  Google Scholar 

  • Gill M (2014) Heavy metal stress in plants: a review. Int J Adv Res 2:1043–1055

    Google Scholar 

  • Gilroy S, Suzuki N, Miller G (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 9:623–630

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  PubMed  Google Scholar 

  • Gorny A, Garczynski S (2002) Genotypic and nutrition-dependent variation in water use efficiency and photosynthetic activity of leaves in winter wheat (Triticum aestivum L.). J Appl Genet 43:145–160

    PubMed  Google Scholar 

  • Goyal M, Asthir B (2010) Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regul 60:13–25

    Article  CAS  Google Scholar 

  • Gunter EA, Kapustina OM, Popeyko OV, Ovodov YS (2007) Influence of ultraviolet-C on the compositions of cell-wall polysaccharides and carbohydrase activities of Silene vulgaris callus. Carbohydr Res 342:182–189

    Article  PubMed  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Intern J Genomics 2014:Article ID: 701596. https://doi.org/10.1155/2014/701596

    Article  CAS  Google Scholar 

  • Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372. https://doi.org/10.4172/1948-5948.1000310

    Article  CAS  Google Scholar 

  • Hadibarata T, Khudhair AB, Salim MR (2012) Breakdown products in the metabolic pathway of anthracene degradation by a ligninolytic fungus Polyporus sp. S133. Water Air Soil Pollut 223:2201–2208

    Article  CAS  Google Scholar 

  • Hampp R, Beulich K, Ziegler H (1976) Effects of zinc and cadmium on photosynthetic CO2 fixation and hill activity of isolated spinach chloroplasts. Z Pflanzer Physioal 77:336–344

    Article  Google Scholar 

  • Han YP, Li YL, Lei ZH, Zhao D, Jia XS (2016) Influence of different root temperature treatment on tomato leaves microstructure. North Hortic 3:17–19

    Article  Google Scholar 

  • Hao Z, AghaKouchak A, Phillips TJ (2013) Changes in concurrent monthly precipitation and temperature extremes. Environ Res Lett 8:34014

    Article  Google Scholar 

  • Hawkes JS (1997) What is a heavy metal? J Chem Educ 74:1369–1374

    Article  Google Scholar 

  • Hectors K, Jacques E, Prinsen E, Guisez Y, Verbelen JP, Jansen MAK, Vissenberg K (2010) UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana. J Exp Bot 61:4339–4349

    Article  CAS  PubMed  Google Scholar 

  • Holaday AS, Ritchie SW, Nguyen HT (1992) Effect of water deficit on gas-exchange parameters and ribulose 1,5-bisphosphate carboxylase activation in wheat. Environ Exp Bot 32:403–410

    Article  CAS  Google Scholar 

  • Hope AB (1993) The chloroplast cytochrome bf complex: a critical focus on function. Biochim Biophys Acta 1143:1–22

    Article  CAS  PubMed  Google Scholar 

  • Hossain A, Sarker MAZ, Saifuzzaman M, Silva JA, Lozovskaya MV, Akhter MM (2013) Evaluation of growth, yield, relative performance and heat susceptibility of eight wheat (Triticum aestivum L.) genotypes grown under heat stress. Int J Plant Prod 7:615–636

    Google Scholar 

  • Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain Z, Mustafa G, Sakata K, Komatsu S (2016) Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. J Hazard Mater 304:291–305

    Google Scholar 

  • Huang YM, Zou YN, Wu QS (2017) Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Sci Rep 7:42335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannonea MF, Groppaa MD, Sousab ME, Raapb MBF, Benavidesa MP (2016) Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environ Exp Bot 131:77–88

    Article  CAS  Google Scholar 

  • IPCC (2007) Fourth assessment synthesis report. Published online, 17 November, 2007. www.ipcc.ch/ipccreports/ar4-syr.htm

  • Jajoo A (2017) Effects of environmental pollutants polycyclic aromatic hydrocarbons (PAH) on photosynthetic processes. In: Hou H, Najafpour M, Moore G, Allakhverdiev S (eds) Photosynthesis: structures, mechanisms, and applications. Springer, Cham, pp 249–259

    Chapter  Google Scholar 

  • Jajoo A, Mekala NR, Tomar RS, Grieco M, Tikkanen M, Aro EM (2014) Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity. J Photochem Photobiol B Biol 137:151–155

    Article  CAS  Google Scholar 

  • Jayakumar M, Amudha P, Kulandaivelu G (2004) Effect of low doses of UV-A and UV-B radiation on photosynthetic activities in Phaseolus mungo L. J Plant Biol 47:105–110

    Article  Google Scholar 

  • Ji X, Shiran B, Wan J, Lewis DC, Jenkins CLD, Condon AG, Richards RA, Dolferus R (2010) Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ 33:926–942

    Article  CAS  PubMed  Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 inter-acts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846

    Article  PubMed  PubMed Central  Google Scholar 

  • Kajlaa M, Yadava VK, Khokharc J, Singh S, Chhokara RS, Meenaa RP, Sharmaa RK (2015) Increase in wheat production through management of abiotic stresses: a review. J Appl Nat Sci 7:1070–1080

    Article  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet- B radiation: a review. Agric For Meteorol 120:191–218

    Article  Google Scholar 

  • Kanwal S, Ilyas N, Shabir S, Saeed M, Gul R, Zahoor M, Batool N, Mazhar R (2018) Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). J Plant Nutr 41:526–538

    Article  CAS  Google Scholar 

  • Kataria S, Jajoo A, Guruprasad KN (2014) Impact of increasing ultraviolet-B (UV-B) radiation on processes. J Photochem Photobiol B Biol 137:55–66

    Article  CAS  Google Scholar 

  • Khurana N, Chauhan H, Khurana P (2013) Wheat chloroplast targeted sHSP26 promoter confers heat and abiotic stress inducible expression in transgenic Arabidopsis plants. PLoS One 8(1):e54418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Hohn B (2000) Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J 19:4431–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreslavski VD, Lankin AV, Vasilyeva GK, Luybimov VY, Semenova GN, Schmitt FJ, Friedrich T, Allakhverdiev SI (2014) Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves. Plant Physiol Biochem 81:135–142

    Article  CAS  PubMed  Google Scholar 

  • Kuhn A, Ballach HJ, Wittig R (2004) Studies in the biodegradation of 5 PAHs (Phenanthrene, pyrene, fluoranthene, chrysene and benzo(a) pyrene) in the presence of rooted poplar cuttings. Environ Sci Pollut Res 11:22–32

    Article  CAS  Google Scholar 

  • Kumar RR, Sharma SK, Goswami S, Singh K, Gadpayle KA, Singh GP, Pathak H, Rai RD (2013) Transcript profiling and biochemical characterization of mitochondrial super-oxide dismutase (mtSOD) in wheat (Triticum aestivum) under different exogenous stresses. Aust J Crop Sci 7:414–424

    CAS  Google Scholar 

  • Kumari JG, Giridara KS, Thippeswamy M, Annapurnadevi A, Thimma NS, Chinta S (2007) Effect of salinity on growth and proteomic changes in two cultivars of mulberry (Morus alba L.) with contrasting salt tolerance. Indian J Biotechnol 6:508–518

    CAS  Google Scholar 

  • Kummerova M, Zezulka S, Vanova L, Fiserova H (2012) Effect of organic pollutant treatment on the growth of pea and maize seedlings. Cent Eur J Biol 7:159–166

    CAS  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973

    Article  CAS  PubMed  Google Scholar 

  • Lenoir I, Fontaine J, Sahraoui ALH (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Zhang J, Cao X (2001) Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa) hybrids. Physiol Plant 112:470–477

    Article  CAS  PubMed  Google Scholar 

  • Lily MK, Bahuguna A, Dangwal K, Garg V (2009) Degradation of benzo [a] pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447). Braz J Microbiol 40:884–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Weisman D, Ye YB, Cui B, Huang YH, Colón-Carmona A, Wang ZH (2009) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382

    Article  CAS  Google Scholar 

  • Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384

    Article  CAS  Google Scholar 

  • Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122

    Article  CAS  PubMed  Google Scholar 

  • Maboko MM (2013) Effect of arbuscular mycorrhiza and temperature control on plant growth, yield, and mineral content of tomato plants grown hydroponically. Hortic Sci 48:1470–1477

    CAS  Google Scholar 

  • Martınez-Ballesta MC, Lopez-Perez L, Muries B, Munoz-Azcarate O, Carvajal M (2009) Climate change and plant water balance: the role of aquaporins – a review. In: Lichtfouse E (ed) Climate change, intercropping, pest control and beneficial microorganisms. Springer, Dordrecht, pp 71–89

    Chapter  Google Scholar 

  • Mass EV, Poss JA (1989) Salt sensitivity of cowpea at various growth stages. Irrig Sci 10:313–320

    Google Scholar 

  • Mathur S, Jajoo A (2014a) Effects of heat stress on growth and crop yield of wheat (Triticum aestivum). In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp 16–184

    Google Scholar 

  • Mathur S, Jajoo A (2014b) Alterations in photochemical efficiency of photosystem II in wheat plant on hot summer day. Physiol Mol Biol Plants 20:527–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur S, Jajoo A (2015) Investigating deleterious effects of ultraviolet (UV) radiations on wheat by a quick method. Acta Physiol Plant 37:121–127

    Article  CAS  Google Scholar 

  • Mathur S, Jajoo A, Mehta P, Bharti S (2011a) Analysis of elevated temperature-induced inhibition of photosystem II by using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol 13:1–6

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Allakhverdiev SI, Jajoo A (2011b) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta 1807:22–29

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Kalaji HM, Jajoo A (2016) Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica 54:185–192

    Article  CAS  Google Scholar 

  • Mathur S, Thripathi V, Jajoo A (2018a) Damaging effects of ultra violet radiations (uvr) on photosynthetic apparatus. In: Singh VP, Singh S, Singh R, Prasad SM (eds) Environment and photosynthesis a future prospect. Stadium Press, New Delhi, pp 317–335

    Google Scholar 

  • Mathur S, Sharma MP, Jajoo A (2018b) Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J Photocehm Photobiol B Biol 180:149–154

    Article  CAS  Google Scholar 

  • McMaster GS (1997) Phenology, development, and growth of the wheat (Triticum aestivum L.) shoot apex: a review. Adv Agron 59:63–118

    Article  Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: biological techniques. Elsevier/Academic, Amsterdam/Heidelberg, pp 159–180

    Chapter  Google Scholar 

  • Monica RC, Cremonini R (2009) Nano particles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Morales LO, Brosché M, Vainonen J, Jenkins GI, Wargent JJ, Sipari N, Strid A, Lindfors AV, Tegelberg R, Aphalo PJ (2013) Multiple roles for UVRESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation. Plant Physiol 161:744–759

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    Article  CAS  Google Scholar 

  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Aust J Plant Physiol 13:143–160

    Google Scholar 

  • Murali NS, Saxe H (1984) Effects of ultraviolet-C radiation on net photosynthesis, transpiration and dark respiration of Spathiphyllum wallisii. Physiol Plant 60:192–119

    Article  CAS  Google Scholar 

  • Najeeb U, Xu L, Ahmed ZI, Rasheed M, Jilani G, Naeem MS, Shen W, Zhou W (2011) Ultraviolet- C mediated physiological and ultrastructural alterations in Juncus effusus L. shoots. Acta Physiol Plant 33:481–488

    Article  CAS  Google Scholar 

  • Nawaz A, Farooq M, Cheema SA, Yasmeen A, Wahid A (2013) Stay green character at grain filling ensures resistance against terminal drought in wheat. Int J Agric Biol 15:1272–1276

    Google Scholar 

  • Negrao S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  CAS  PubMed  Google Scholar 

  • Neslihan-Ozturk Z, Talamel V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt stressed barley. Plant Mol Biol 48:551–573

    Article  Google Scholar 

  • Nogues S, Allen DJ, Morison JIL, Baker NR (1999) Characterization of stomatal closure caused by ultraviolet-B radiation. Plant Physiol 121:489–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papageorgiou GC, Govindjee (2004) Advances in photosynthesis and respiration. In: Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht

    Chapter  Google Scholar 

  • Paranthaman SR, Karthikeyan B (2015) Bioremediation of heavy metal in paper mill effluent using Pseudomonas spp. Int J Microbiol 1:1–5

    Google Scholar 

  • Patlolla AK, Berry A, May LB, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9:1649–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peña-Montenegro TD, Lozano L, Dussán J (2015) Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5. Stand Genomic Sci 10:2. https://doi.org/10.1186/1944-3277-10-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessarakli M, Huber JT (1991) Biomass production and protein synthesis by alfalfa under salt stress. J Plant Nutr 14:283–293

    Article  CAS  Google Scholar 

  • Pradas del Real AE, Vidal V, Carriere M, Castillo-Michel H, Levard C, Chaurand P, Sarret G (2017) Ag nanoparticles and wheat roots: a complex interplay. Environ Sci Technol 51:5774–5782

    Article  CAS  PubMed  Google Scholar 

  • Pradedova EV, Isheeva OD, Salyaev RK (2011) Antioxidant defense enzymes in cell vacuoles of red beet roots. Russ J Plant Physiol 58:36–44

    Article  CAS  Google Scholar 

  • Qadir M, Quillerou E, Nangia V (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38:282–295

    Article  Google Scholar 

  • Rahimzadeh P, Hosseini S, Dilmaghani K (2011) Effects of UV-A and UV-C radiation on some morphological and physiological parameters in savory (Satureja hortensis L.). Ann Biol Res 2:164–171

    CAS  Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422

    Google Scholar 

  • Reddy KR, Singh SK, Koti S, Kakani VG, Zhao D, Gao W, Reddy VR (2013) Quantifying the effects of corn growth and physiological responses to ultraviolet-B radiation for modeling. Agron J 105:1367–1377

    Article  Google Scholar 

  • Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Chemistry, biochemistry of nanoparticles, and their role in antioxidative defense system in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_1

    Chapter  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Saeidi M, Abdoli M (2015) Effect of drought stress during grain filling on yield and its components, gas exchange variables, and some physiological traits of wheat cultivars. J Agric Sci Technol 17:885–898

    Google Scholar 

  • Saini HS, Westgate ME (2000) Reproductive development in grain crops during drought. Adv Agron 68:59–96

    Article  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Ogren WL (1996) The mechanism of rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynth Res 47:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sazanova KA, Bashmakov DI, Brazaityte A, Bobinas C, Dvskisucho P, Lukatkin AS (2012) The effect of heavy metals and thidiazuron on winter wheat (Triticum aestivum L.) seedlings. Žemdirbystė-Agriculture 99:273–278

    Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma C, Mathur S, Tomar RS, Jajoo A (2017) Investigating role of triton X-100 in ameliorating deleterious effects of anthracene in wheat plants. Photosynthetica 56:652–659

    Article  CAS  Google Scholar 

  • Shekoofa A, Bijanzadeh E, Emam Y, Pessarakli M (2013) Effect of salt stress on respiration of various wheat lines/cultivars at early growth stages. J Plant Nutr 36:243–250

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill.). Saudi J Biol Sci 21:13–17

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui MH, Wahibi AL, Mohammad F (eds) Nanotechnology and plant sciences. Spiringer, Cham, pp 19–35

    Google Scholar 

  • Siipola SM, Kotilainen T, Sipari N, Morales LO, Lindfors AV, Robson TM, Aphalo PJ (2015) Epidermal UV-A absorbance and whole leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation. Plant Cell Environ 38:941–952

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Bhattacharya A, Channashettar VA, Jeyaseelan CP, Gupta S, Sarma PM, Mandal AK, Lal B (2012a) Biodegradation of oil spill by petroleum refineries using consortia of novel bacterial strains. Bull Environ Contam Toxicol 89:257–262

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Srivastava PK, Prasad SM (2012b) Differential effects of UV-B radiation fluence rates on growth, photosynthesis and phosphate metabolism in two cyanobacteria under copper toxicity. Toxicol Environ Chem 94:1511–1535

    Article  CAS  Google Scholar 

  • Singh S, Agrawal SB, Agrawal M (2014) UVR8 mediated plant protective responses under low UV-B radiation leading to photosynthetic acclimation. J Photochem Photobiol B Biol 137:67–76

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Arbuscular mycorrhizas. In: Mycorrhizal symbiosis. Academic, San Diego, pp 1–188

    Google Scholar 

  • Stroch M, Materov Z, Vrabl D, Karlický V, Sigut L, Nezval J, Spunda V (2015) Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment. Plant Physiol Biochem 96:90–96

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Tabaeizadeh Z (1998) Drought-induced responses in plant cells. Int Rev Cytol 182:193–247

    Article  CAS  PubMed  Google Scholar 

  • Teramura AH, Sullivan JH (1994) Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth Res 39:463–473

    Article  CAS  PubMed  Google Scholar 

  • Teramura AH, Ziska LH (1996) Ultraviolet-B radiation and photosynthesis. In: Baker P (ed) Hotosynthesis and the environment. Kluwer Academic Publisher, Dordrecht, pp 435–450

    Google Scholar 

  • Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K (2015) Responses of tree species to heat waves and extreme heat events. Plant Cell Environ 38:1699–1712

    Article  PubMed  Google Scholar 

  • Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol 117:851–858

    Article  CAS  Google Scholar 

  • Tiwari A, Jajoo A, Bharti S (2008) Heat-induced changes in the EPR signal of tyrosine D (YDOX): a possible role of cytochrome b559. J Bioenerg Biomembr 40:237–243

    Article  CAS  PubMed  Google Scholar 

  • Tol NV, Rolloos M, Agustinjn D, Alia A, Groot HJ, Hooykaas PJJ, van der Zaal BJ (2017) An Arabidopsis mutant with high operating efficiency of photosystem II and low chlorophyll fluorescence. Sci Rep 7:3314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomar RS, Jajoo A (2014) Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum). Ecotoxicol Environ Saf 109:110–115

    Article  CAS  PubMed  Google Scholar 

  • Tomar RS, Jajoo A (2015) Photomodified fluoranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growth and photosynthetic processes. Ecotoxicol Environ Saf 122:31–36

    Article  CAS  PubMed  Google Scholar 

  • Tomar RS, Jajoo A (2017) Photosystem I (PSI) becomes more tolerant to fluoranthene due to initiation of cyclic electron flow (CEF). Funct Plant Biol 44:978–984

    Article  CAS  PubMed  Google Scholar 

  • Tomar RS, Mathur S, Allakhverdiev SI, Jajoo A (2012) Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). J Bioenerg Biomembr 44:411–419

    Article  CAS  Google Scholar 

  • Tripathi S, Sarkar S (2014) Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci. https://doi.org/10.1007/s13204-014-0355-9

    Article  CAS  Google Scholar 

  • Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, Sharma S, Singh VP, Singh PK, Prasad SM, Dubey NK, Pandey AC, Sahi S, Chauhan DK (2017a) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate–glutathione cycle. Front Plant Sci 8:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017b) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  CAS  PubMed  Google Scholar 

  • Tripp J, Mishra SK, Scharf KD (2009) Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. Plant Cell Environ 32:123–133

    Article  CAS  PubMed  Google Scholar 

  • Turner NC (1979) Drought resistance and adaptation to water deficits in crop plants. In: Mussel H, Staples RC (eds) Stress physiology in crop plants. Wiley, New York, pp 181–194

    Google Scholar 

  • Valentin L, Lu-Chau TA, Lopez C, Feijoo G, Moreira MT, Lema JM (2007) Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white rot fungus Bjerkandera sp. BOS55. Process Biochem 42:641–648

    Article  CAS  Google Scholar 

  • Van del Staaij J, Rozema J, van Beem A, Aerts R (2011) Increased solar UV-B radiation may reduce infection by arbuscular mycorrhizal fungi (AMF) in dune grassland plants: evidence from five years of field exposure. Plant Ecol 154:171–177

    Google Scholar 

  • Vanninia C, Domingoa G, Onellib E, Mattiac FD, Brunic I, Marsonia M, Bracalea M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148

    Article  CAS  Google Scholar 

  • Vierling E (1991) The role of heat shock proteins in plants. Annu Rev Plant Physiol 42:579–620

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang M, Xia G (2018) The landscape of molecular mechanisms for salt tolerance in wheat. Crop J 6:42–47

    Article  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    PubMed  PubMed Central  Google Scholar 

  • Wardlaw IF, Wrigley CW (1994) Heat tolerance in temperate cereals: an overview. Aust J Plant Physiol 21:695–703

    Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source in inventory and budget. Environ Pollut 88:91–108

    Article  CAS  PubMed  Google Scholar 

  • Wilson MI, Ghosh S, Gerhardt KE, Holland N, Babu TS, Edelman M, Dumbroff EB, Greenburg BM (1995) In-vivo photomodification of ribulose 1,5-bisphosphate carboxylase oxygenase holoenzyme by ultraviolet-B radiation formation of a 66-kiloDalton variant of the large subunit. Plant Physiol 109:221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollenweber B, Porter JR, Schellberg J (2003) Lack of interaction between extreme high temperature events at vegetative and reproductive growth stages in wheat. J Agron Crop Sci 189:142–150

    Article  Google Scholar 

  • Yahyaoui A, Djebar MR, Khen L, Bouarroudj T, Kahli H, Bourayou C (2017) Determination of zinc oxide nanoparticles assessment of exposure wheat Triticum asetivum L. to zinc oxide nanoparticles (ZnO): evaluation of oxidative damage. Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii:27271–27280

    Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu Q, Liu L (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26:1621–1631

    Article  CAS  Google Scholar 

  • Yin JJ, Zhao B, Xia Q, Fu PP (2012) Electron spins resonance spectroscopy for studying the generation and scavenging of reactive oxygen species by nanomaterials. In: Liang XJ (ed) Nanopharmaceuticals: the potential application of nanomaterials. World Scientific Publishing Company, Singapore, pp 375–400

    Chapter  Google Scholar 

  • Zalibekov ZG (2011) The arid regions of the world and their dynamics in conditions of modern climatic warming. Arid Ecosyst 1:1–7

    Article  Google Scholar 

  • Zhang LL, Shi Y, Qi X, Wang QX, Cui L (2015) Effects of drought stress on the ultrastructure and physiological indexes of leaf cells in three potato varieties. Agric Res Arid Areas 33:75–80

    CAS  Google Scholar 

  • Zlatev ZS, Lidon Fernando JC, Kaimakanova M (2012) Plant physiological responses to UV radiation. Emir J Food Agric 24:481–501

    Article  Google Scholar 

  • Zuk-Golaszewska K, Upadhyaya MK, Golaszewski J (2003) The effect of UV-B radiation on plant growth and development. Plant Soil Environ 49:135–140

    Article  Google Scholar 

Download references

Acknowledgments

SM thanks the University Grants Commission (UGC), India, for Post Doctoral Fellowship for Women (PDFWM-2014-15-GEMAD-23945). PRK thanks UGC, India, for Junior Research Fellowship (JRF) (UGC-Ref.No. F.16-6(Dec.2016)/2017(NET).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathur, S., Raikalal, P., Jajoo, A. (2019). Physiological Responses of Wheat to Environmental Stresses. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_2

Download citation

Publish with us

Policies and ethics