Skip to main content

Omics Approaches for Developing Abiotic Stress Tolerance in Wheat

  • Chapter
  • First Online:

Abstract

Wheat yield is greatly influenced by the environmental factors such as drought, salt, and high or low temperature. Understanding the molecular mechanisms of stress tolerance effectively requires information at the genomic, proteomic, and transcriptomic levels. The continuous progress in the analytical and the experimental technologies resulted in the development of many experimental approaches that can identify the cellular molecules. These technologies called “omics technologies.” Most of them are high throughput with very fast rates of data generation and huge outputs. They are based on bioinformatics, statistical and computational tools. These technologies have made obvious contributions to the current progressions in our understanding of plant biology as a whole or in particular plant stress tolerance. In this chapter, I will present the foremost omics technologies in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in wheat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acuña-Galindo MA, Mason RE, Subramanian NK, Hays DB (2015) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492

    Article  Google Scholar 

  • Akpinar BA, Lucas S, Budak H (2017) A large-scale chromosome-specific SNP discovery guideline. Funct Integr Genomics 17:97–105

    Article  CAS  PubMed  Google Scholar 

  • Ali MB, Ibrahim AMH, Malla S, Rudd J, Hays DB (2013) Family-based QTL mapping of heat stress tolerance in primitive tetraploid wheat (Triticum turgidum L.). Euphytica 192:189–203

    Article  CAS  Google Scholar 

  • Alvarez S, Roy Choudhury S, Pandey S (2014) Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J Proteome Res 13:1688–1701. https://doi.org/10.1021/pr401165b

    Article  CAS  PubMed  Google Scholar 

  • Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L, Giuliano G, Cattivelli L (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10:279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arruda MP, Brown P, Brown-Guedira G, Krill AM, Thurber C, Merrill KR, Foresman BJ, Kolb FL (2016) Genome-wide association mapping of Fusarium head blight resistance in wheat using genotyping-by-sequencing. Plant Genome 9. https://doi.org/10.3835/plantgenome2015.04.0028

    Article  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218

    Article  CAS  Google Scholar 

  • Awlachew ZT, Singh R, Kaur S, Bains NS, Chhuneja P (2016) Transfer and mapping of the heat tolerance component traits of Aegilops speltoides in tetraploid wheat Triticum durum. Mol Breed 36:78. https://doi.org/10.1007/s11032-016-0499-2

    Article  CAS  Google Scholar 

  • Bálint AF, Röder MS, Hell R, Galiba G, Börner A (2007) Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. Biol Plant 51:129–134

    Article  Google Scholar 

  • Barakat MN, Saleh MS, Al-Doss AA, Moustafa KA, Elshafei AA, Zakri AM, Al-Qurainy FH (2015) Mapping of QTLs associated with abscisic acid and water stress in wheat. Biol Plant 59:291–297

    Article  CAS  Google Scholar 

  • Beecher FW, Mason E, Mondal S, Awika J, Hays D, Ibrahim A (2012) Identification of quantitative trait loci (QTLs) associated with maintenance of wheat (Triticum aestivum Desf.) quality characteristics under heat stress conditions. Euphytica 188:361–368

    Article  CAS  Google Scholar 

  • Begcy K, Walia H (2015) Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds. Plant Sci 240:109–119

    Article  CAS  PubMed  Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485

    Article  PubMed  Google Scholar 

  • Bernardo L, Morcia C, Carletti P, Ghizzoni R, Badeck FW, Rizza F, Lucini L, Terzi V (2017) Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. J Proteome 169:21–32. https://doi.org/10.1016/j.jprot.2017.03.024

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgos MS, Messmer MM, Stamp P, Schmid JE (2001) Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.) – a physiological and genetic approach. Euphytica 122:287–295

    Article  Google Scholar 

  • Cai S, Bai G-H, Zhang D (2008) Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor Appl Genet 117:49. https://doi.org/10.1007/s00122-008-0751-1

    Article  CAS  PubMed  Google Scholar 

  • Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Agric Res 52:1089–1119

    Article  CAS  Google Scholar 

  • Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J (2017) An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res 27:885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui F, Fan X, Chen M, Zhang N, Zhao C, Zhang W, Han J, Ji J, Zhao X, Yang L, Zhao Z (2016) QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theor Appl Genet 129:469–484

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Bai G, Zhang D, Hong D (2013) Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Euphytica 192:171–179

    Article  CAS  Google Scholar 

  • Deshmukh RK, Sonah H, Kondawar V, Singh Tomar RS, Deshmukh NK (2012) Identification of meta quantitative trait loci for agronomical traits in rice (Oryza sativa). Indian J Genet Plant Breed 72:264

    CAS  Google Scholar 

  • Ding H, Han Q, Ma D, Hou J, Huang X, Wang C, Xie Y, Kang G, Guo T (2018) Characterizing physiological and proteomic analysis of the action of H 2 S to mitigate drought stress in young seedling of wheat. Plant Mol Biol Report 36:45–57. https://doi.org/10.1007/s11105-017-1055-x

    Article  CAS  Google Scholar 

  • Dreisigacker S (2005) Genetic diversity in elite lines and landraces of CIMMYT spring bread wheat and hybrid performance of crosses among elite germplasm

    Google Scholar 

  • Fan Y, Shabala S, Ma Y, Xu R, Zhou M (2015) Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 16:1–11. https://doi.org/10.1186/s12864-015-1243-8

    Article  CAS  Google Scholar 

  • Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, Carroll AJ, Saito K, Fraser PD, DeLuca V (2011) Recommendations for reporting metabolite data. Plant Cell 23:2477–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filiz E, Ozdemir BS, Budak F, Vogel JP, Tuna M, Budak H (2009) Molecular, morphological, and cytological analysis of diverse Brachypodium distachyon inbred lines. Genome 52:876–890

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, Menzel C, Chen W, Li Y, Zeng R, Khaitovich P (2009) Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics 10:161. https://doi.org/10.1186/1471-2164-10-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahlaut V, Jaiswal V, Tyagi BS, Singh G (2017) QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PloS one 12:e0182857. https://doi.org/10.1371/journal.pone.0182857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Li Y, Zhu YM, Bai X, Lv DK, Guo D, Ji W, Cai H (2010) Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO 3 treatment. BMC Plant Biol 10:153. https://doi.org/10.1186/1471-2229-10-153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge P, Ma C, Wang S, Gao L, Li X, Guo G, Ma W, Yan Y (2012) Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal Bioanal Chem 402:1297–1313. https://doi.org/10.1007/s00216-011-5532-z

    Article  CAS  PubMed  Google Scholar 

  • Ghaedrahmati M, Mardi M, Naghavi MR, Majidi Heravan E, Nakhoda B, Azadi A, Kazemi M (2014) Mapping QTLs Associated with Salt Tolerance Related Traits in Seedling Stage of Wheat (Triticum aestivum L). J Agric Sci Technol 16:1413–1428

    Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golabadi M, Arzani A, Maibody SAM, Tabatabaei BS, Mohammadi SA (2011) Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica 177:207–221

    Article  Google Scholar 

  • Goswami S, Kumar RR, Dubey K, Singh JP, Tiwari S, Kumar A, Smita S, Mishra DC, Kumar S, Grover M, Padaria JC (2016) SSH analysis of endosperm transcripts and characterization of heat stress regulated expressed sequence tags in bread wheat. Front Plant Sci 7:1–13. https://doi.org/10.3389/fpls.2016.01230

    Article  Google Scholar 

  • Grainger CM, Rajcan I (2014) Characterization of the genetic changes in a multi-generational pedigree of an elite Canadian soybean cultivar. Theor Appl Genet 127:211–229

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Ge P, Ma C, Li X, Lv D, Wang S, Ma W, Yan Y (2012) Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J Proteome 75:1867–1885. https://doi.org/10.1016/j.jprot.2011.12.032

    Article  CAS  Google Scholar 

  • Guo R, Shi L, Jiao Y, Li M, Zhong X, Gu F, Liu Q, Xia X, Li H (2018) Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AOB PLANTS:1–13. https://doi.org/10.1093/aobpla/ply016

  • Han Q, Kang G, Guo T (2013) Proteomic analysis of spring freeze-stress responsive proteins in leaves of bread wheat (Triticum aestivum L.). Plant Physiol Biochem 63:236–244. https://doi.org/10.1016/j.plaphy.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Lainé AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    Article  CAS  PubMed  Google Scholar 

  • Haque E, Abe F, Mori M, Nanjo Y, Komatsu S, Oyanagi A, Kawaguchi K (2014) Quantitative proteomics of the root of transgenic wheat expressing TaBWPR-1.2 genes in response to waterlogging. Proteomes 2:485–500. https://doi.org/10.3390/proteomes2040485

    Article  PubMed  PubMed Central  Google Scholar 

  • Heyneke E, Watanabe M, Erban A, Duan G, Buchner P, Walther D, Kopka J, Hawkesford MJ, Hoefgen R (2017) Characterization of the wheat leaf metabolome during grain filling and under varied N-supply. Front Plant Sci 8:1–19. https://doi.org/10.3389/fpls.2017.02048

    Article  Google Scholar 

  • Hussain B, Lucas SJ, Ozturk L, Budak H (2017) Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat. Sci Rep:1–14. https://doi.org/10.1038/s41598-017-15726-6

  • Azam F, Chang X, Jing R (2015) Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. Euphytica 202:245–258

    Article  CAS  Google Scholar 

  • International Wheat Genome Sequencing (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science (80- ) 345:1251788

    Article  CAS  Google Scholar 

  • Janmohammadi M, Mock HP, Matros A (2014) Proteomic analysis of cold acclimation in winter wheat under field conditions. Icel Agric Sci 27:3–15

    Google Scholar 

  • Kato H, Takahashi S, Saito K (2011) Omics and integrated omics for the promotion of food and nutrition science. J Tradit Complement Med 1:25–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawaura K, Mochida K, Ogihara Y (2008) Genome-wide analysis for identification of salt-responsive genes in common wheat. Funct Integr Genomics 8:277–286

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K (2009) A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. J Proteome Res 8:4766–4778

    Article  CAS  PubMed  Google Scholar 

  • Kulski JK (2016) Next-generation sequencing—an overview of the history, tools, and “Omic” applications. In: Next generation sequencing-advances, applications and challenges. Intech, Rijeka

    Chapter  Google Scholar 

  • Kumar S, Sehgal SK, Kumar U, Prasad PV, Joshi AK, Gill BS (2012) Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica 186:265–276

    Article  CAS  Google Scholar 

  • Kumar RR, Singh GP, Goswami S, Pathak H, Rai RD (2014) Proteome analysis of wheat (Triticum aestivum) for the identification of differentially expressed heat-responsive proteins. Aust J Crop Sci 8:973–986

    CAS  Google Scholar 

  • Kumari D, Maria A (2018) QTLs and potential candidate genes for heat stress tolerance identified from the mapping populations specifically segregating for F v/F m in wheat. Front Plant Sci 8:1668. https://doi.org/10.3389/fpls.2017.01668

    Article  Google Scholar 

  • Kusano M, Fukushima A, Kobayashi M, Hayashi N, Jonsson P, Moritz T, Ebana K, Saito K (2007) Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J Chromatogr B 855:71–79

    Article  CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511

    Article  CAS  PubMed  Google Scholar 

  • Li G, Peng X, Xuan H, Wei L, Yang Y, Guo T, Kang G (2013) Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions. J Proteome Res 12:4846–4861. https://doi.org/10.1021/pr4008283

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cai J, Liu F, Dai T, Cao W, Jiang D (2014) Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Funct Plant Biol 41:690–703. https://doi.org/10.1071/FP13306

    Article  CAS  PubMed  Google Scholar 

  • Li DA, Walker E, Francki MG (2015) Identification of a member of the catalase multigene family on wheat chromosome 7A associated with flour b* colour and biological significance of allelic variation. Mol Gen Genomics 290:2313–2324. https://doi.org/10.1007/s00438-015-1083-x

    Article  CAS  Google Scholar 

  • Li N, Zhang S, Liang Y, Qi Y, Chen J, Zhu W, Zhang L (2018) Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes. J Proteome 172:122–142. https://doi.org/10.1016/j.jprot.2017.09.016

    Article  CAS  Google Scholar 

  • Liu X, Baird WM (2003) Differential expression of genes regulated in response to drought or salinity stress in sunflower. Crop Sci 43:678–687

    CAS  Google Scholar 

  • Liu S, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  • Liu N, Bai G, Lin M, Xu X, Zheng W (2017) Genome-wide association analysis of powdery mildew resistance in U.S. winter wheat. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-11230-z

    Article  CAS  Google Scholar 

  • Löffler M, Schön C-C, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed 23:473–488

    Article  CAS  Google Scholar 

  • Lotti C, Salvi S, Pasqualone A, Tuberosa R, Blanco A (2000) Integration of AFLP markers into an RFLP-based map of durum wheat. Plant Breed 119:393–401

    Article  CAS  Google Scholar 

  • Lu Y, Li R, Wang R, Wang X, Zheng W, Sun Q, Tong S, Dai S, Xu S (2017) Comparative proteomic analysis of flag leaves reveals new insight into wheat heat adaptation. Front Plant Sci 8:1–11. https://doi.org/10.3389/fpls.2017.01086

    Article  Google Scholar 

  • Ma H-X, Bai G-H, Carver BF, Zhou L-L (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112:51

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhou E, Huo N, Zhou R, Wang G, Jia J (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153:109–117

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Manavalan LP, Guttikonda SK, Phan Tran L-S, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276

    Article  CAS  PubMed  Google Scholar 

  • Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AM, Hays DB (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174:423–436

    Article  Google Scholar 

  • Mason RE, Mondal S, Beecher FW, Hays DB (2011) Genetic loci linking improved heat tolerance in wheat (Triticum aestivum L.) to lower leaf and spike temperatures under controlled conditions. Euphytica 180:181–194

    Article  Google Scholar 

  • Merchuk-Ovnat L, Barak V, Fahima T et al (2016) Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front Plant Sci 7:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S (2018) Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep 8:1–18. https://doi.org/10.1038/s41598-018-24012-y

    Article  CAS  Google Scholar 

  • Misra AN, Biswal AK, Misra M (2002) Physiological, biochemical and molecular aspects of water stress responses in plants, and the bio-technological applications. Proc Natl Acad Sci India Sect B 72:115–134

    CAS  Google Scholar 

  • Morgan JM, Tan MK (1996) Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Funct Plant Biol 23:803–806

    Article  CAS  Google Scholar 

  • Mourad AMI, Sallam A, Belamkar V, Wegulo S, Bowden R, Jin Y, Mahdy E, Bakheit B, El-Wafaa AA, Poland J, Baenziger PS (2018) Genome-wide association study for identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat. Front Plant Sci 9:380. https://doi.org/10.3389/fpls.2018.00380

    Article  PubMed  PubMed Central  Google Scholar 

  • Mwadzingeni L, Shimelis H, Rees DJG, Tsilo TJ (2017) Genome-wide association analysis of agronomic traits in wheat under drought- stressed and non-stressed conditions. PLoS One 12:e0171692. https://doi.org/10.1371/journal.pone.0171692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23(9):3215–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navakode S, Weidner A, Lohwasser U, Röder MS, Börner A (2009) Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166:283–290

    Article  CAS  Google Scholar 

  • Nezhad KZ, Weber WE, Röder MS, Sharma S, Lohwasser U, Meyer RC, Saal B, Börner A (2012) QTL analysis for thousand-grain weight under terminal drought stress in bread wheat (Triticum aestivum L.). Euphytica 186:127–138

    Article  Google Scholar 

  • Nguyen VNT, Vo KTX, Park H, Jeon JS, Jung KH (2016) A systematic view of the MLO family in rice suggests their novel roles in morphological development, diurnal responses, the light-signaling pathway, and various stress responses. Front Plant Sci 7:1443. https://doi.org/10.3389/fpls.2016.01413

    Article  Google Scholar 

  • Pandey R, Joshi G, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S (2014) A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS One 9:e95800. https://doi.org/10.1371/journal.pone.0095800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent B, Shahinnia F, Maphosa L, Berger B, Rabie H, Chalmers K, Kovalchuk A, Langridge P, Fleury D (2015) Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat. J Exp Bot 66:5481–5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pariyar SR, Dababat AA, Sannemann W, Erginbas-Orakci G, Elashry A, Siddique S, Morgounov A, Leon J, Grundler FM (2016) Genome-wide association study in wheat identifies resistance to the cereal cyst nematode heterodera filipjevi. Phytopathology 106:1128–1138. https://doi.org/10.1094/PHYTO-02-16-0054-FI

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8:2676–2686. https://doi.org/10.1074/mcp.M900052-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placido DF, Campbell MT, Folsom J, Cui X, Kruger GR, Baenziger PS, Walia H (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161:1806–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushpendra KG, Harindra SB, Pawan LK, Neeraj K, Ajay K, Reyazul RM, Amita M, Jitendra K (2007) QTL analysis for some quantitative traits in bread wheat. J Zhejiang Univ Sci B 8:807–814

    Article  PubMed  PubMed Central  Google Scholar 

  • Putri SP, Yamamoto S, Tsugawa H, Fukusaki E (2013) Current metabolomics: technological advances. J Biosci Bioeng 116:9–16

    Article  CAS  PubMed  Google Scholar 

  • Ragupathy R, Ravichandran S, Mahdi MS, Huang D, Reimer E, Domaratzki M, Cloutier S (2016) Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Sci Rep 6:39373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Liao M, Delhaize E, Rebetzke GJ, Weligama C, Spielmeyer W, James RA (2015) Early vigour improves phosphate uptake in wheat. J Exp Bot 66:7089–7100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvador-Moreno N, Ryan PR, Holguín I, Delhaize E, Benito C, Gallego FJ (2018) Transcriptional profiling of wheat and wheat-rye addition lines to identify candidate genes for aluminum tolerance. Biol Plant:1–9. https://doi.org/10.1007/s10535-018-0804-5

    Article  CAS  Google Scholar 

  • Schauer N, Fernie AR (2006) Plant metabolomics: towards biological function and mechanism. Trends Plant Sci 11:508–516

    Article  CAS  PubMed  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Singh R, Rane J, Gupta VK, Mamrutha HM, Tiwari R (2016) Mapping quantitative trait loci associated with grain filling duration and grain number under terminal heat stress in bread wheat (Triticum aestivum L.). Plant Breed 135:538–545

    Article  CAS  Google Scholar 

  • Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V (2017) Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J Proteome 163:28–51. https://doi.org/10.1016/j.jprot.2017.05.011

    Article  CAS  Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Singh K, Patil RV, Kadam S, Bharti S, Prasad P, Singh NK, Khanna-Chopra R (2015) Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.). Euphytica 203:449–467

    Article  CAS  Google Scholar 

  • Singh RP, Runthala A, Khan S, Jha PN (2017) Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8. PLoS One 12:1–20. https://doi.org/10.1371/journal.pone.0183513

    Article  CAS  Google Scholar 

  • Sukumaran S, Reynolds MP, Sansaloni C (2018) Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Front Plant Sci 9:1–16. https://doi.org/10.3389/fpls.2018.00081

    Article  Google Scholar 

  • Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zhao C, Zheng Y (2012) Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol 159:721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatham AS, Shewry PR (2008) Allergens to wheat and related cereals. Clin Exp Allergy 38:1712–1726

    CAS  PubMed  Google Scholar 

  • Taylor MR, Brester GW, Boland MA (2005) Hard white wheat and gold medal flour: general mills’ contracting program. Rev Agric Econ 27:117–129

    Article  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Tiwari C, Wallwork H, Kumar U, Dhari R, Arun B, Mishra VK, Reynolds MP, Joshi AK (2013) Molecular mapping of high temperature tolerance in bread wheat adapted to the Eastern Gangetic Plain region of India. Field Crop Res 154:201–210

    Article  Google Scholar 

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recor. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • Tyagi S, Gupta PK (2012) Meta-analysis of QTLs involved in pre-harvest sprouting tolerance and dormancy in bread wheat. Triticeae Genom Genet 3:9–24. https://doi.org/10.5376/tgg.2012.03.0002

    Article  Google Scholar 

  • Ullah N, Yüce M, Neslihan Öztürk Gökçe Z, Budak H (2017) Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics 18:1–12. https://doi.org/10.1186/s12864-017-4321-2

    Article  CAS  Google Scholar 

  • Valluru R, Reynolds MP, Davies WJ, Sukumaran S (2017) Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytol 214:271–283. https://doi.org/10.1111/nph.14367

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PD, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee TV, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Qian Y, Hu H, Xu Y, Zhang H (2011) Comparative proteomic analysis of Cd-responsive proteins in wheat roots. Acta Physiol Plant 33:349–357. https://doi.org/10.1007/s11738-010-0554-2

    Article  CAS  Google Scholar 

  • Wang SG, Jia SS, Sun DZ, Hua FA, Chang XP, Jing RL (2016a) Mapping QTLs for stomatal density and size under drought stress in wheat (Triticum aestivum L.). J Integr Agric 15:1955–1967. https://doi.org/10.1016/S2095-3119(15)61264-3

    Article  CAS  Google Scholar 

  • Wang X, Huang M, Zhou Q, Cai J, Dai T, Cao W, Jiang D (2016b) Physiological and proteomic mechanisms of waterlogging priming improves tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environ Exp Bot 132:175–182. https://doi.org/10.1016/j.envexpbot.2016.09.003

    Article  CAS  Google Scholar 

  • Wang Y, Yang M, Wei S, Qin F, Zhao H, Suo B (2017) Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front. Plant Sci 7:2024. https://doi.org/10.3389/fpls.2016.02024

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2009) Cold-and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC Plant Biol 9:55. https://doi.org/10.1186/1471-2229-9-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Xu Y-F, An D-G, Liu D-C, Zhang AM, Xu HX, Li B (2012a) Mapping QTLs with epistatic effects and QTL× treatment interactions for salt tolerance at seedling stage of wheat. Euphytica 186:233–245

    Article  Google Scholar 

  • Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna BM (2012b) Whole-genome strategies for marker-assisted plant breeding. Mol Breed 29:833–854

    Article  CAS  Google Scholar 

  • Xu J, Li Y, Sun J, Du L, Zhang Y, Yu Q, Liu X (2013a) Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. Plant Biol 15:292–303. https://doi.org/10.1111/j.1438-8677.2012.00639.x

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Li S, Li L, Zhang X, Xu H, An D (2013b) Mapping QTLs for salt tolerance with additive, epistatic and QTL× treatment interaction effects at seedling stage in wheat. Plant Breed 132:276–283

    Article  CAS  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275–282

    Article  CAS  Google Scholar 

  • Yu Y, Zhen S, Wang S, Wang Y, Cao H, Zhang Y, Li J, Yan Y (2016) Comparative transcriptome analysis of wheat embryo and endosperm responses to ABA and H 2 O 2 stresses during seed germination. BMC Genomics 17:97. https://doi.org/10.1186/s12864-016-2416-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang H (2015) QTL mapping for traits related to P-deficient tolerance using three related RIL populations in wheat. Euphytica 203:505–520

    Article  Google Scholar 

  • Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 52:996–1007

    Article  PubMed  Google Scholar 

  • Zhang YF, Huang XW, Wang LL, Wei L, Wu ZH, You MS, Li B (2014) Proteomic analysis of wheat seed in response to drought stress. J Integr Agric 13:919–925. https://doi.org/10.1016/S2095-3119(13)60601-2

    Article  CAS  Google Scholar 

  • Zhao Y, Gowda M, Würschum T, Longin CF, Korzun V, Kollers S, Schachschneider R, Zeng J, Fernando R, Dubcovsky J, Reif JC (2013) Dissecting the genetic architecture of frost tolerance in Central European winter wheat. J Exp Bot 64:4453–4460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6:1–7. https://doi.org/10.1093/gigascience/gix097

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba T. Ebeed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebeed, H.T. (2019). Omics Approaches for Developing Abiotic Stress Tolerance in Wheat. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_17

Download citation

Publish with us

Policies and ethics