Skip to main content

Trending Methods to Enhance Antioxidant Activities in Wheat

  • Chapter
  • First Online:
Wheat Production in Changing Environments

Abstract

Free radicals are defined as any molecular species which are proficient of independent existence and consist of an unpaired electron in their atomic orbital. These free radicals are derived from reactive oxygen or reactive nitrogen species which are generally produced in cellular metabolism and tend to increase under stress conditions. The most vulnerable biological targets of these reactive species include biomolecules such as proteins, lipids, and nucleic acids. To neutralize the adverse effect of free radicals, a strong antioxidant mechanism is required in plant cells. Wheat is one of the major cereals in the world, which is used in food and nonfood products. Wheat is cultivated in tropical and subtropical regions both under rain-fed and irrigated conditions, as it has a high level of adaptation. Wheat has a well-known antioxidant defense mechanism, i.e., enzymatic and nonenzymatic. However, crop production is adversely affected by environmental stresses alone or in combination. These stresses are commonly due to salinity, drought, waterlogging, cold, heavy metals, etc. Recent studies suggest the use of algal consortium in the soil, treatment with external agents like organic acids, signaling molecules, essential elements, seed priming, etc. can lead to a constructive approach toward a high yield of wheat under adverse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

abscisic acid

APX:

ascorbate peroxidase

AsA:

ascorbic acid

ATP:

adenosine triphosphate

CAT:

catalase

CK:

cytokinins

CO:

carbon monoxide

DHA:

dehydroascorbate

DHAR:

dehydroascorbate reductase

DMSP:

dimethylsulfoniopropionate

GO:

glycolate oxidase

GPX:

glutathione peroxidase

GR:

glutathione reductase

GS:

glutathione synthase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

GST:

glutathione S-transferase

HO:

heme oxygenase

IAA:

indoleacetic acid

MDA:

malondialdehyde

MDHA:

monodehydroascorbate

MDHAR:

monodehydroascorbate reductase

NADH:

nicotinamide adenine dinucleotide

NADPH:

nicotinamide adenine dinucleotide phosphate

NO:

nitric oxide

NOS:

nitric oxide synthases

NR:

nitrate reductase

PCs:

phytochelatins

PEG:

polyethylene glycol

POD:

guaiacol peroxidase

POX:

peroxidases

PSII:

photosystem II

ROS:

reactive oxygen species

RWC:

relative water content

SA:

salicylic acid

SHAM:

salicylhydroxamic acid

SNP:

sodium nitroprusside

References

  • Abbasi A, Shekan F, Mustafavi SH (2015) Effect of paclobutrazol and salicylic acid on antioxidants enzyme activity in drought stress in wheat. Idesia 33(4):5–13

    Article  Google Scholar 

  • Agarwal S, Sairam RK, Srivastava GC, Meena RC (2005) Changes in antioxidant enzyme activity and oxidative stress by abscisic acid and salicylic acid in wheat genotype. Biol Plant 49(40):541–550

    Article  CAS  Google Scholar 

  • Aggarwal A, Ezaki B, Tripathi BN (2015) Two detoxification mechanisms by external malate detoxification and anti-peroxidation enzymes cooperatively confer aluminum tolerance in the roots of wheat (Triticum aestivum L.). Environ Exp Bot 120:43–54

    Article  CAS  Google Scholar 

  • Ahmed M, Kamran A, Asif M, Qadeer U, Ahmed ZI, Goyal A (2013) Silicon priming: a potential source to impart abiotic stress tolerance in wheat: a review. Am J Crop Sci 7(4):484–491

    CAS  Google Scholar 

  • Alzahrani Y, KuÅŸvuran A, Alharby HF, KuÅŸvuran S, Rady MM (2018) The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol Environ Saf 154:187–196

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    CAS  PubMed  Google Scholar 

  • Bajwa AA, Farooq M, Nawaz A (2017) Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24(2):239–249

    Article  CAS  Google Scholar 

  • Baky HHA, Hussein MM, Baroty GS (2008) Algal extracts improve antioxidant defense abilities and salt tolerance of wheat plant irrigated with sea water. Afr J Biochem Res 2(7):151–164

    Google Scholar 

  • Baky HHA, Baz FK, Baroty GS (2010) Enhancing antioxidant availability in wheat grains from plants grown under seawater stress in response to microalgae extract treatments. J Sci Food Agric 90:299–303

    Article  CAS  Google Scholar 

  • Balotf S, Islam S, Kavoosi G, Kholdebarin B, Juhasz A, Ma W (2018) How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels. PLoS One 13(1):e0190269. https://doi.org/10.1371/journal.pone.0190269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao J, Ding TL, Jia WJ, Wang LY, Wang BS (2011) Effect of exogenous hydrogen sulfide on wheat seed germination under salt stress. Mod Agric Sci Technol 20:40–42

    Google Scholar 

  • Boddey RM, Baldani VLD, Baldani JI, Dobereiner J (1986) Effect of inoculation of Azospirillum spp. on nitrogen accumulation by field-grown wheat. Plant Soil 95:109–121

    Article  Google Scholar 

  • Cançado GMA (2011) The importance of genetic diversity to manage abiotic stress. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants – mechanisms and adaptations. Intech Open, London. https://doi.org/10.5772/22397

    Chapter  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra R, Takeuchi H, Hasegaw T, Kumar RK (2012) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 43(1):273–282

    Article  CAS  Google Scholar 

  • Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer S, Scagliusi SM, Da Silva PR, Wiethölter P, Torres GAM, Lau EY (2013) The importance for food security of maintaining rust resistance in wheat. Food Sec 5:157–176

    Article  Google Scholar 

  • Chen XY, Ding X, Xu S, Wang R, Xuan W, Cao ZY, Chen J, Wu HH, Ye MB, Shen WB (2009) Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. J Integr Plant Biol 51(10):951–960

    Article  CAS  PubMed  Google Scholar 

  • Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164:354–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daoud AM, Hemada MM, Saber N, El-Araby AA, Moussa L (2018) Effect of silicon on the tolerance of wheat (Triticum aestivum L.) to salt stress at different growth stages: case study for the management of irrigation water. Plan Theory 7(2):29. https://doi.org/10.3390/plants7020029

    Article  Google Scholar 

  • Ducsay L, Ložek O (2006) Effect of selenium foliar application on its content in winter wheat grain. Plant Soil Environ 52(2):78–82

    Article  CAS  Google Scholar 

  • Esim N, Atici Ö (2015) Effects of exogenous nitric oxide and salicylic acid on chilling-induced oxidative stress in wheat (Triticum aestivum). Front Life Sci 8(2):124–130

    Article  CAS  Google Scholar 

  • Feki K, Farhat-Khemakhem A, Kamoun Y, Saibi W, Gargouri A, Brini F (2016) Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses. J Plant Physiol 198:56–68

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S (2013) Role of selenium in protecting plants against abiotic stress. Enviorn Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Fercha A, Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, Laganá½° A (2014) Comparative Analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J Proteome 108:238–257

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gantar M, Kerby NW, Rowell P, Obreth Z (1991) Colonization of wheat (Triticum vulgare L.) by N-fixing cyanobacteria: I. A survey of soil cyanobacterial isolates forming associations with roots. New Phytol 118:477–483

    Article  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gong HJ, Chen KM, Zhao ZG, Chen GC, Zhou WJ (2008) Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol Plant 52(3):592–596

    Article  CAS  Google Scholar 

  • Hamada AM (2001) Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostl Vyr 47:444–450

    CAS  Google Scholar 

  • Hameed A, Seikh MA, Hameed A, Farooq T, Basra SMA, Jamil A (2014) Chitosan seed priming improves seed germination and seedling growth in wheat (Triticum aestivum L.) Under osmotic stress induced by polyethylene glycol. Philipp Agric Sci 97(3):294–299

    Google Scholar 

  • Hameed A, Farooq T, Basra SMA, Sheikh MA, Ibrahim M (2015) Wheat seed germination, antioxidant enzymes and biochemical enhancements by sodium nitroprusside priming. Agrochimica 59(2):93–107

    Google Scholar 

  • Hananuzzaman M, Hossain MA, Fujita M (2011) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5:353–365

    Article  Google Scholar 

  • Hananuzzaman M, Nahar K, Alam MM, Fujita M (2012) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivumL.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 6(8):1314–1323

    Google Scholar 

  • Hartfield CL (2002) Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal 4(2):301–307

    Article  Google Scholar 

  • He L, Gao Z, Li R (2009) Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. Afri. J Biotechnol 8:6151–6157

    CAS  Google Scholar 

  • Hua Z, Wen-Biao S, Lang-Lai X (2003) Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolism under osmotic stress. Acta Bot Sin 45:901–905

    Google Scholar 

  • Huang BK, Xu S, Xuan W, Li M, Cao ZY, Liu KL (2006) Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling leaves. J Integr Plant Biol 48:249–254

    Article  CAS  Google Scholar 

  • Hussain M, Haq MW, Farooq S, Jabran K, Farooq M (2016) The impact of seed priming and row spacing on the productivity of different cultivars of irrigated wheat under early season drought. Exp Agric 52(3):477–490

    Article  Google Scholar 

  • Ibrahim WM (2016) Potential impact of marine algal extracts on the growth and metabolic activities of salinity stressed wheat seedlings. J Appl Sci 16:388–394

    Article  CAS  Google Scholar 

  • Ibrahim WM, Ali RM, Hemida KA, Sayed MA (2014) Role of ulva lactuca extract in alleviation of salinity stress on wheat seedlings. Sci World J 2014:847290. https://doi.org/10.1155/2014/847290

    Article  CAS  Google Scholar 

  • Jafar MZ, Farooq M, Cheema MA, Afzal I, Basra SMA, Wahid MA, Aziz T, Shahid M (2012) Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci 198:38–45

    Article  Google Scholar 

  • Jini D, Joseph B (2017) Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci 24(2):97–108

    Article  Google Scholar 

  • Jones H, Leigh RA, Tomos AD, Jones RGW (1987) The effect of abscisic acid on cell turgor pressures, solute content and growth of wheat roots. Planta 170:257–262

    Article  CAS  PubMed  Google Scholar 

  • Kalapos B, Novak A, Dobrev P, Vitamvas P, Marincs F, Galiba G, Vankova R (2017) Effect of the winter wheat cheyenne 5A substituted chromosome on dynamics of abscisic acid and cytokinins in freezing-sensitive chinese spring genetic background. Front Plant Sci 8:2033. https://doi.org/10.3389/fpls.2017.02033

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol Plant 57:718–724

    Article  CAS  Google Scholar 

  • Katsenios N, Kavvadias V, Theocharopoulos S, Bilalis D, Ioannou Z, Papadopoulos A, Liakopoulou N (2015) Influence of pulsed electromagnetic field on plant growth, nutrient absorption and yield of durum wheat. Not Sci Biol 7(4):505–509

    Article  CAS  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Mahajan P, Kohli RK, Rishi V (2015) Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoS One 10(9):e0138713. https://doi.org/10.1371/journal.pone.0138713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan NA, Singh SS, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agro Crop Sci 193:435–444

    Article  CAS  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015a) Salicylic acid induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462. https://doi.org/10.3389/fpls.2015.00462

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015b) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    Article  CAS  PubMed  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, Siddiqui MH (2017) Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 68:91–102. https://doi.org/10.1016/j.niox.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  • Lalk I, Dorffling K (1985) Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiol Plant 63:287–292

    Article  CAS  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  • Li JT, Qiu ZB, Zhang XW, Wang LS (2011) Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol Plant 33:835–842

    Article  CAS  Google Scholar 

  • Liang Y, Zhu J, Li Z, Chu G, Ding Y, Zang J, Sun W (2008) Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ Exp Bot 64:286–294

    Article  CAS  Google Scholar 

  • Ling T, Zang B, Cui W, Wu M, Lin J, Zhou W, Huang J, Shen W (2009) Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction. Plant Sci 177:331–340

    Article  CAS  Google Scholar 

  • Liu Y, Xu S, Ling T, Xu L, Shen W (2010) Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J Plant Physiol 167:1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Lu W, Ma Q, Ma C (2017) Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses. J Plant Nutr 40(17):2458–2467

    Article  CAS  Google Scholar 

  • Lu J, Li XN, Yang YL, Jia LY, You J, Wang WR (2013) Effect of hydrogen peroxide on seedling growth and antioxidants in two wheat cultivars. Biol Plant 57(3):487–494

    Article  CAS  Google Scholar 

  • Lyons GH, Lewis J, Lorimer MF, Holloway RE, Brace DM, Stangoulis JCR, Graham RD (2004) High-selenium wheat: Agronomic biofortification strategies to improve human nutrition. Food Agric Environ 2(1):171–178

    Google Scholar 

  • Lyons GH, James CR, Stangoulis JCR, Graham RD (2005) Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant Soil 270:179–188

    Article  CAS  Google Scholar 

  • Ma D, Sun D, Li Y, Wang C, Xie Y, Guo T (2014) Effect of nitrogen fertilisation and irrigation on phenolic content, phenolic acid composition, and antioxidant activity of winter wheat grain. J Sci Food Agric 95(5):1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Ma D, Sun D, Wang C, Qin H, Ding H, Li Y, Guo T (2015) Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul 35(1):1–10

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivumL.) under green house conditions. Biocatal Agri Biotechnol 6:68–75

    Article  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Mirza SR, Ilyas N, Batool N, Mazhar R, Bibi F, Kanwal S, Saeed M (2016) Seed priming: technology to improve wheat growth under abiotic stress condition. Int J Biosci 9(1):268–275

    CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:1360–1385

    Article  CAS  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4. https://doi.org/10.3389/fpls.2014.00004

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signalling for acclimation or cell death? Plant Physiol 154:521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabti E, Sahnoune M, Adjrad S, Dommelen AV, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from algerian soil restores wheat growth under saline conditions. Eng Life Sci 7(4):354–360

    Article  CAS  Google Scholar 

  • Nabti E, Sahnoine M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29:6–22

    Article  CAS  Google Scholar 

  • Nayyar H, Walia DP (2003) Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol Plant 46(2):275–279

    Article  CAS  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivumL.) Seedlings. J Plant Growth Regul 29:106–115

    Article  CAS  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants 2012:pls014. https://doi.org/10.1093/aobpla/pls014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piantadosi CA (2002) Biological chemistry of carbon monoxide. Antioxid Redox Signal 4(2):259–270

    Article  CAS  PubMed  Google Scholar 

  • Polesskaya OG, Kashirina EI, Alekhina ND (2004) Changes in the activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply. Russ J Plant Physiol 51(5):615–620

    Article  CAS  Google Scholar 

  • Rahaie M, Xue GP, Schenk PM (2013) The role of transcription factors in wheat under different abiotic stresses. In: Plants – mechanisms and adaptations. InTech, Rijeka, pp 351–366

    Google Scholar 

  • Rathod GR, Anand A (2015) Effect of seed magneto-priming on growth, yield and Na/K ratio in wheat (Triticum aestivumL.) under salt stress. Indian J Plant Physiol 21(1):15–22

    Article  CAS  Google Scholar 

  • Rehman A, Farooq M, Ahmad R, Basra SMA (2015) Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Sci Technol 43:262–268

    Article  Google Scholar 

  • Sa ZS, Huang LQ, Wu GL, Ding JP, Chen XY, Yu T, Shi C, Shen WB (2007) Carbon monoxide: A novel antioxidant against oxidative stress in wheat seedling leaves. J Integr Plant Biol 49(5):638–645

    Article  CAS  Google Scholar 

  • Salehzade H, Shishvan MI, Ghiyasi M, Forouzin F, Siyahjani AA (2009) Effect of seed priming on germination and seedling growth of wheat (Triticum aestivumL.). Res J Biol Sci 4(5):629–631

    Google Scholar 

  • Saxena I, Shekhawat GS (2013) Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide 32:13–20

    Article  CAS  PubMed  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Shakirova FM, Allagulova CR, Maslennikova DR, Klyuchnikova EO, Avalbaev AM, Bezrukova MV (2015) Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ Exp Bot 22:19–28

    Google Scholar 

  • Shan C, Ou X (2018) Hydrogen peroxide is involved in the regulation of ascorbate and glutathione metabolism in wheat leaves under water stress. Cereal Res Commun 46(1):21–30

    Article  CAS  Google Scholar 

  • Shan CJ, Zhang SL, Li DF, Zhao YZ, Tian XL, Zhao XL (2011) Effects of exogenous hydrogen sulphide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiol Plant 33:2533–2540

    Article  CAS  Google Scholar 

  • Shan C, Zeng S, Ou X (2018) The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma 255(4):1257–1262

    Article  CAS  PubMed  Google Scholar 

  • Shapiro CA, Bavougian CM (2017) Crop sequence and in season nitrogen (N) application effects on organic winter wheat (Triticum aestivumL.) yield and quality. Biol Agric Horticic 33(3):158–171

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Sheng H, Zeng J, Yan F, Wang X, Wang Y, Kang H, Sha L, Zang H, Zhou Y (2015) Effect of exogenous salicylic acid on manganese toxicity, mineral nutrients translocation and antioxidative system in polish wheat (Triticum polonicum L.). Acta Physiol Plant 37:32. https://doi.org/10.1007/s11738-015-1783-1

    Article  CAS  Google Scholar 

  • Sher A, khan A, Hussain S, Cai LJ, Ahmad MI, Jamro SA, Rashid A (2017) Significance of chemical priming on yield and yield components of wheat under drought stress. Am J Plant Sci 8:1339–1344

    Article  CAS  Google Scholar 

  • Shi Z, Yang S, Han D, Zhou Z, Li X, Zhang B (2017) Silicon alleviates cadmium toxicity in wheat seedlings (Triticum aestivum L.) by reducing cadmium ion uptake and enhancing antioxidative capacity. Environ Sci Pollut Res 25(8):7638–7646

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Ali HM, Sakran AM, Basalah MO, Al-Khaishany MYY (2013) Mitigation of nickel stress by the exogenous application of salicylic acid and nitric oxide in wheat. Am J Crop Sci 7(11):1780–1788

    Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Son SH, Chitnis VR, Liu A, Gao F, Nguyen TN, Ayele BT (2016) Abscisic acid metabolic genes of wheat (Triticum aestivumL.): identification and insights into their functionality in seed dormancy and dehydration tolerance. Planta 244(2):429–447

    Article  CAS  PubMed  Google Scholar 

  • Stamatiadis S, Evangelou L, Tsadilas C, Yvin JC, Cruz F, Mina JMG (2014) Responses of winter wheat to Ascophyllum nodosum (L.) Le Jol. extract application under the effect of N fertilization and water supply. J Appl Phycol 27(3):589–600

    Google Scholar 

  • Stumpf B, Yan F, Honermeier B (2015) Nitrogen fertilization and maturity influence the phenolic concentration of wheat grain (Triticum aestivum). J Plant Nutr Soil Sci 178(1):118–125

    Article  CAS  Google Scholar 

  • Sun C, Lu L, Liu L, Liu W, Yu Y, Liu X, Hu Y, Jin C, Lin X (2014) Nitrate reductase mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). New Phytol 201:1240–1250

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Liu L, Yu Y, Liu W, Lu L, Jin C, Lin X (2015) Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat. J Integr Plant Biol 57:550–561

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Liu L, Lu L, Jin C, Lin X (2018) Nitric oxide acts downstream of hydrogen peroxide in regulating aluminium induced antioxidant defense that enhances aluminum resistance in wheat seedlings. Environ Exp Bot 145:95–103

    Article  CAS  Google Scholar 

  • Tabassum T, Farooq M, Ahmad R, Zohaib A, Wahid A (2017) Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat. Plant Physiol Biochem 118:362–369

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Lie Y (2006) Nitric oxide treatment alleviates drought stress in wheat seedlings. Biol Plant 50(4):775–778

    Article  CAS  Google Scholar 

  • Valluru R, Davies WJ, Reynold MP, Dodd LC (2016) Foliar abscisic acid- to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat. Front Plant Sci 7:461. https://doi.org/10.3389/fpls.2016.00461

    Article  PubMed  PubMed Central  Google Scholar 

  • Veisz O, Galiba G, Sutka J (1996) Effect of abscisic acid on the cold hardiness of wheat seedlings. J Plant Physiol 149:439–443

    Article  CAS  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Hu C, Tan Q, Xu S, Sun X (2017a) Nitric oxide mediates molybdenum-induced antioxidant defense in wheat under drought stress. Front Plant Sci 8:1085. https://doi.org/10.3389/fpls.2017.01085

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S, Hu C, Tan Q, Zhao X, Xu S, Xla Y, Sun X (2017b) Nitric oxide acts downstream of abscisic acid in molybdenum-induced oxidative tolerance in wheat. Plant Cell Rep 37(4):599–610

    Article  CAS  Google Scholar 

  • Xie Y, Ling T, Han Y, Liu K, Zheng Q, Huang L, He Z, Hu B, Fang L, Shen Z, Yang Q, Shen W (2008) Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots. Plant Cell Environ 31:1864–1881

    Article  CAS  PubMed  Google Scholar 

  • Xu FJ, Jin CW, Liu WJ, Zhang YS, Lin XY (2011) Pretreatment with H2O2 alleviates aluminum-induced oxidative stress in wheat seedlings. J Integr Plant Biol 53:44–53

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Liu Y, Sheng H, Wang Y, Kang H, Zeng J (2016) Salicylic acid and nitric oxide increase photosynthesis and antioxidant defense in wheat under UV-B stress. Biol Plant 60(4):686–694

    Article  CAS  Google Scholar 

  • Yang D, Peng D, Yang W, Yin Y, Li Y, Wang Z (2014) Application of abscisic acid regulates antioxidant enzymes activities and modulates endosperm cell division in winter wheat. Can J Plant Sci 96:283–295

    Article  CAS  Google Scholar 

  • Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008) Hydrogen sulphide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50:1518–1529

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Dou W, Jiang CX, Wei ZJ, Liu J, Jones RL (2010a) Hydrogen sulphide stimulates b-amylase activity during early stages of wheat grain germination. Plant Signal Behav 5:1031–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Hu LY, Li P, Hu KD, Jiang CX, Luo JP (2010b) Hydrogen sulphide alleviated chromium toxicity in wheat. Biol Plant 54:743–747

    Article  CAS  Google Scholar 

  • Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010c) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang MF, Hua LY, Wang SH, Hua KD, Bao LJ (2010d) Hydrogen sulphide promotes wheat seed germination under osmotic stress. Russ J Plant Physiol 57:532–539

    Article  CAS  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227

    Article  CAS  Google Scholar 

  • Zhu YG, Smits EAHP, Zhao FJ, Williams PN, Meharg AA (2009) Slenium in high plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14(8):436–442

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, K., Kataria, S., Gadre, R. (2019). Trending Methods to Enhance Antioxidant Activities in Wheat. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_11

Download citation

Publish with us

Policies and ethics