Skip to main content

Leakage Detection of Water-Induced Pipelines Using Hybrid Features and Support Vector Machines

  • Conference paper
  • First Online:
  • 1226 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 924))

Abstract

Pipelines are significant parts of water distribution systems for life and manufacture. Any leakage occurring on those can result in a waste of resource and finance; consequently, detecting early faults for them become necessary. Nowadays, there are many approaches to deal with this problem; however, their results still have limitations. This paper proposes a pattern recognition method that first extracts time-domain and frequency-domain features from vibration signals to represent each fault distinctly, and these features are then utilized with a classifier, i.e. support vector machine (SVM), to classify fault types. To verify the proposed model, the experiments are carried out on different samples of fault in various operating conditions such as pressure, flow rate and temperature. Experimental results show that the proposed technique achieves a high classification accuracy for different leakage sizes, which can be applied in real-world pipeline applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mandal, S.K., Chan, F.T.S., Tiwari, M.K.: Leak detection of pipeline: an integrated approach of rough set theory and artificial bee colony trained SVM. Expert Syst. Appl. 39, 3071–3080 (2012)

    Article  Google Scholar 

  2. Xu, M.-R., Xu, S.-P., Guo, H.-Y.: Determination of natural frequencies of fluid-conveying pipes using homotopy perturbation method. Comput. Math Appl. 60, 520–527 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dilena, M., Dell’Oste, M.F., Morassi, A.: Detecting cracks in pipes filled with fluid from changes in natural frequencies. Mech. Syst. Signal Process. 25, 3186–3197 (2011)

    Article  Google Scholar 

  4. Zhang, Y., Gorman, D., Reese, J.: Analysis of the vibration of pipes conveying fluid. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 213, 849–859 (1999)

    Article  Google Scholar 

  5. Murvay, P.-S., Silea, I.: A survey on gas leak detection and localization techniques. J. Loss Prev. Process Ind. 25, 966–973 (2012)

    Article  Google Scholar 

  6. Blevins, R.D.: Formulas for Dynamics, Acoustics and Vibration. Wiley, Hoboken (2015)

    Book  Google Scholar 

  7. Kang, M., Kim, J., Wills, L.M., Kim, J.M.: Time-varying and multi resolution envelope analysis and discriminative feature analysis for bearing fault diagnosis. IEEE Trans. Industr. Electron. 62, 7749–7761 (2015)

    Article  Google Scholar 

  8. Manjurul Islam, M.M., Kim, J.-M.: Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector machines. Reliab. Eng. Syst. Saf. 184, 55–66 (2018)

    Article  Google Scholar 

  9. Li, S., Song, Y., Zhou, G.: Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition. Measurement 115, 39–44 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20172510102130). It was also funded in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A3B03931927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Myon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quy, T.B., Kim, JM. (2019). Leakage Detection of Water-Induced Pipelines Using Hybrid Features and Support Vector Machines. In: Bhatia, S., Tiwari, S., Mishra, K., Trivedi, M. (eds) Advances in Computer Communication and Computational Sciences. Advances in Intelligent Systems and Computing, vol 924. Springer, Singapore. https://doi.org/10.1007/978-981-13-6861-5_33

Download citation

Publish with us

Policies and ethics