Skip to main content

Ionic Conductive Polymers

  • Chapter
  • First Online:
Soft Actuators

Abstract

Electroactive polymers (EAPs) are attracting considerable interest due to their special characteristics, including high flexibility and low weight. Ionic conductive polymers have the potential to play a main role in the realization of smart systems for applications such as bio-inspired and autonomous robotics, medical devices, and aerospace. In this chapter, the fundamental aspects of ionic polymer actuators such as fabrication methods, evaluation methods, and recent progresses are mainly described.

Especially, ionic polymer-metal composites (IPMCs) are one of the most promising EAP materials for the artificial muscle-like actuators and sensors. However, IPMC has some problems to overcome for practical uses. Among the problems, back relaxation and fabrication of IPMC are big issues. In this chapter, some challenges to solve these problems are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asaka K, Okuzaki H (eds) (2014) Soft actuators – materials, modeling, applications, and future perspectives. Springer, Tokyo. https://doi.org/10.1007/978-981-13-6850-9

    Book  Google Scholar 

  2. Pugal D, Kim SJ, Kim KJ, Leang KK (2010) IPMC: recent progress in modeling, manufacturing, and new applications. In: Proceedings of SPIE Electroactive Polymer Actuators and Devices (EAPAD) 2010, 7642, 76420U. https://doi.org/10.1117/12.84828

  3. Carpi F, Smela E (eds) (2009) Biomedical applications of electroactive polymer actuators. Wiley, Chichester. https://doi.org/10.1002/9780470744697

    Book  Google Scholar 

  4. Oguro K, Kawami Y, Takenake H (1992) Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J Micromachine Soc 5:27–30

    Google Scholar 

  5. Bar-Cohen Y (ed) (2004) Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, 2nd edn. SPIE Press, Washington, DC

    Google Scholar 

  6. Shahinpoor M (1992) Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles. Smart Mater Struct 1:91–94. https://doi.org/10.1088/0964-1726/1/1/014

    Article  Google Scholar 

  7. Tadokoro S, Konyo M, Oguro K (2004) Modeling IPMC for design of actuation mechanisms. In: Bar-Cohen Y (ed) Electroactive Polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, 2nd edn. SPIE Press, Washington, DC, pp 385–427. https://doi.org/10.1117/3.547465.ch13

    Chapter  Google Scholar 

  8. Fukishima T, Asaka K, Kosaka A, Aida T (2005) Layer-by-layer casting fabrication of soft actuator based on single-walled carbon nanotubes and ionic liquids. Angewandte Chemie Int Ed 44:2410–2413

    Article  Google Scholar 

  9. Mukai K, Asaka K, Kiyohaya K, Sugino T, Takeuchi I, Fukushima T, Aida T (2008) High performance fully plastic actuator based on ionic-liquid-based bucky gel. Electrochim Acta 53(17):5555–5562

    Article  CAS  Google Scholar 

  10. Saito S, Katoh Y, Kokubo H, Watanabe M, Maruo S (2009) Development of a soft actuator using a photocurable ion gel. J Miromech Microeng 19:035005. https://doi.org/10.1088/0960-1317/19/3/035005

    Article  CAS  Google Scholar 

  11. Imaizumi S, Kokubo H, Watanabe M (2012) Polymer actuators using ion-gel electrolytes prepared by self-assembly of ABA-triblock copolymers. Macromolecules 45(1):401–409. https://doi.org/10.1021/ma2022138

    Article  CAS  Google Scholar 

  12. Imaizumi S, Kato Y, Kokubo H, Watanabe M (2012) Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures. J Phys Chem B 116(16):5080–8089. https://doi.org/10.1021/jp301501c

    Article  CAS  PubMed  Google Scholar 

  13. Imaizumi S, Otsuki Y, Yasuda T, Kokubo H, Watanabe M (2013) Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials. ACS Appl Mater Interfaces 5(13):6307–6315. https://doi.org/10.1021/am401351q

    Article  CAS  PubMed  Google Scholar 

  14. Kokubo H, Honda T, Imaizumi S, Dokko K, Watanabe M (2012) Effects of carbon electrode materials on performance of ionic polymer actuators having electric double-layer capacitor structure. Electrochemistry 81(10):849–852. https://doi.org/10.5796/electrochemistry.81.849

    Article  CAS  Google Scholar 

  15. Otero TF, Martinez JG, Hosaka K, Okuzaki H (2011) Electrochemical characterization of PEDOT–PSS–sorbitol electrodes. Sorbitol changes cation to anion interchange during reactions. J Electronal Chem 657(1–2):23–27. https://doi.org/10.1016/j.jelechem.2011.02.017

    Article  CAS  Google Scholar 

  16. Okuzaki H, Takagi S, Hishiki F, Tanigawa R (2014) Ionic liquid/polyurethane/PEDOT: PSS composites for electro-active polymer actuators. Sens Actuators B Chem 194:59–63. https://doi.org/10.1016/j.snb.2013.12.059

    Article  CAS  Google Scholar 

  17. Liu S, Montazami R, Liu Y, Jain V, Lin M, Heflin JR, Zhang QM (2009) Layer-by-layer self-assembled conductor network composites in ionic polymer metal composite actuators with high strain response. Appl Phys Lett 95:023505. https://doi.org/10.1063/1.3179554

    Article  CAS  Google Scholar 

  18. Liu Y, Zhao R, Ghaffari M, Lin J, Liu S, Cebeci H, Villoria RG, Montazami R, Wang DD, Wardle BL, James R, Heflin JR, Zhang QM (2012) Equivalent circuit modeling of ionomer and ionic polymer conductive network composite actuators containing ionic liquids. Sens Actuators A Phys 181:70–76. https://doi.org/10.1016/j.sna.2012.05.002

    Article  CAS  Google Scholar 

  19. Montazami R, Liu S, Liu Y, Wang D, Zhang Q, Heflin JR (2011) Thickness dependence of curvature, strain, and response time in ionic electroactive polymer actuators fabricated via layer-by-layer assembly. J Appl Phys 109:104301. https://doi.org/10.1063/1.3590166

    Article  CAS  Google Scholar 

  20. Hong W, Almomani A, Montazami R (2014) Influence of ionic liquid concentration on the electromechanical performance of ionic electroactive polymer actuators. Org Electron 15(11):2982–2987. https://doi.org/10.1016/j.orgel.2014.08.036

    Article  CAS  Google Scholar 

  21. Almomani A, Hong W, Hong W, Montazami R (2017) Influence of temperature on the electromechanical properties of ionic liquid-doped ionic polymer-metal composite actuators. Polymers 9(8):358. https://doi.org/10.3390/polym9080358

    Article  CAS  PubMed Central  Google Scholar 

  22. Yeo RS, Yeager HL (1985) Structural and transport properties of perfluorinated ion-exchange membrane. In: Conway BE, White RE, Bockris JOM (eds) Modern aspects of electrochemistry. Plenum, New York, pp 437–504

    Google Scholar 

  23. DuPont, Nafion Membranes NE-112, NE-1135, N-115, N-117 (product information)

    Google Scholar 

  24. Asaka K, Oguro K, Nishimura Y, Mizuhara M, Takenaka H (1995) Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J 27:436–440. https://doi.org/10.1295/polymj.27.436

    Article  CAS  Google Scholar 

  25. Tadokoro S, Murakami T, Fuji S, Kanno R, Hattori M, Takamori T, Oguro K (1996) An elliptic friction drive element using an ICPF (ion conducting polymer gel film) actuator. In: Proc IEEE international conference on robotics and automation, pp 205–212

    Google Scholar 

  26. Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles – a review. Smart Mater Struct 7:R15. https://doi.org/10.1088/0964-1726/7/6/001

    Article  CAS  Google Scholar 

  27. Oguro K, Fujiwara N, Asaka K, Onishi K, Sewa S (1999) Polymer electrolyte actuator with gold electrodes. In: Proceedings of SPIE smart structures and materials 1999: electroactive polymer actuators and devices, 3669, pp 64–71. https://doi.org/10.1117/12.349698

  28. Fujiwara N, Asaka K, Nishimura Y, Oguro K, Torikai E (2000) Preparation of gold-solid polymer electrolyte composites as electric stimuli-responsive materials. Chem Mater 12(6):1750–1754

    Article  CAS  Google Scholar 

  29. Onishi K, Sewa S, Asaka K, Fujiwara N, Oguro K (2000) Bending response of polymer electrolyte actuator. In: Proceedings of SPIE smart structures and materials 2000: Electroactive Polymer Actuators and Devices (EAPAD), 3987, pp 121–128. https://doi.org/10.1117/12.387770

  30. Shahinpoor M, Kim KJ (2000) The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles. Smart Mater Struct 9:543–551. https://doi.org/10.1088/0964-1726/9/4/318

    Article  CAS  Google Scholar 

  31. Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct 10:819–833. https://doi.org/10.1088/0964-1726/10/4/327

    Article  CAS  Google Scholar 

  32. Kim KJ, Shahinpoor M (2003) Ionic polymer–metal composites: II. Manufacturing techniques. Smart Mater Struct 12:65–79. https://doi.org/10.1088/0964-1726/12/1/308

    Article  CAS  Google Scholar 

  33. Shahinpoor M (2003) Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles – a review. Electrochim Acta 48:2343–2353. https://doi.org/10.1016/S0013-4686(03)00224-X

    Article  CAS  Google Scholar 

  34. Asaka K, Oguro K (2009) IPMC actuators: fundamentals. In: Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. Wiley, Chichester, pp 103–119. https://doi.org/10.1002/9780470744697

    Chapter  Google Scholar 

  35. Asaka K, Oguro K (2000) Bending of polyelectrolyte membrane platinum composites by electric stimuli, Part II. Response kinetics. J Electroanal Chem 480:186–198. https://doi.org/10.1016/S0022-0728(99)00458-1

    Article  CAS  Google Scholar 

  36. Onishi S, Sewa S, Asaka K, Fujiwara N, Oguro K (2001) Morphology of electrodes and bending response of the polymer electrolyte electrodes and bending response of the polymer electrolyte actuator. Electrochim Acta 46:737–743. https://doi.org/10.1016/S0013-4686(00)00656-3

    Article  Google Scholar 

  37. Asaka K, Fujiwara N, Oguro K, Onishi K, Sewa S (2001) State of water and ionic conductivity of solid polymer electrolyte membranes in relation to polymer actuators. J Electroanal Chem 505:24–32. https://doi.org/10.1016/S0022-0728(01)00445-4

    Article  CAS  Google Scholar 

  38. Asaka K, Mori N, Hayashi K, Nakabo Y, Mukai T, Luo ZW (2004) Modeling of the electromechanical response of ionic polymer metal composites (IPMC). In: Proceedings of SPIE, smart structures and materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), 5385, 172. https://doi.org/10.1117/12.539090

  39. Gennes PG, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518. https://doi.org/10.1209/epl/i2000-00299-3.M

    Article  Google Scholar 

  40. Yamaue T, Mukai H, Asaka K, Doi M (2005) Electrostress diffusion coupling model for polyelectrolyte gels. Macromolecules 38(4):1349–1356. https://doi.org/10.1021/ma047944j

    Article  CAS  Google Scholar 

  41. Bennett MD, Leo DJ (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens Actuators A Phys 115(1):79–90. https://doi.org/10.1016/j.sna.2004.03.043

    Article  CAS  Google Scholar 

  42. Wang J, Xu C, Taya M, Kuga Y (2006) Flemion-based actuator with ionic liquid as solvent. In: Proceedings of SPIE smart structures and materials 2006: Electroactive Polymer Actuators and Devices (EAPAD), 6168, 61680R. https://doi.org/10.1117/12.658548

  43. Wang J, Xu C, Taya M, Kuga Y (2007) A Flemion-based actuator with ionic liquid as solvent. Smart Mater Struct 16:S214–S219. https://doi.org/10.1088/0964-1726/16/2/S03

    Article  CAS  Google Scholar 

  44. Bennett MD, Leo DJ, Wilkes GL, Beyer FL, Pechar TW (2006) A model of charge transport and electromechanical transduction in ionic liquid-swollen Nafion membranes. Polymer 47:6782–6796. https://doi.org/10.1016/j.polymer.2006.07.061

    Article  CAS  Google Scholar 

  45. Oh IK, Jeon JH, Lee YG (2006) Multiple electrode patterning of ionic polymer metal composite actuators. In: Proceedings of SPIE smart structure and materials 2006: Electro Active polymer Actuators and Devices (EAPAD), 6168, 616828. https://doi.org/10.1117/12.658436

  46. Kikuchi K, Tsuchitani S, Miwa M, Asaka K (2008) Formation of patterned electrode in ionic polymer-metal composite using dry film photoresist. IEEJ Trans Electr Electron Eng 3(4):452–454. https://doi.org/10.1002/tee.20299

    Article  CAS  Google Scholar 

  47. Nakabo Y, Mukai T, Asaka K (2005) Kinematic modeling and visual sensing of multi-DOF robot manipulator with patterned artificial muscle. In: Proceedings of IEEE international conference robotics and automation, pp 4326–4331. https://doi.org/10.1109/ROBOT.2005.1570784

  48. Chen Z, Tan X (2010) Monolithic fabrication of ionic polymer-metal composite actuators capable of complex deformation. Sens Actuators A Phys 157(2):246–257. https://doi.org/10.1016/j.sna.2009.11.024

    Article  CAS  Google Scholar 

  49. Aoyagi W, Omiya M (2016) Anion effects on the ion exchange process and the deformation property of ionic polymer metal composite actuators. Materials (Basel) 9(6):479. https://doi.org/10.3390/ma9060479

    Article  CAS  Google Scholar 

  50. Chung CK, Fung PK, Hong YZ, Ju MS, Lin CCK, Wu TC (2006) A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sens Actuators B Chem 117(2):367–375. https://doi.org/10.1016/j.snb.2005.11.021

    Article  CAS  Google Scholar 

  51. Pugal D, Jung K, Aabloo A, Kim KJ (2010) Ionic polymer–metal composite mechanoelectrical transduction: review and perspectives. Polym Int 59(3):279–289. https://doi.org/10.1002/pi.2759

    Article  CAS  Google Scholar 

  52. Aoyagi W, Omiya M (2013) Mechanical and electrochemical properties of an IPMC actuator with palladium electrodes in acid and alkaline solutions. Smart Mater Struct 22:055028. https://doi.org/10.1088/0964-1726/22/5/055028

    Article  CAS  Google Scholar 

  53. Heo S, Kim KJ, Lee DY, Vemuri S, Lee MH (2005) Multiwalled carbon nanotube/IPMC nanocomposite. In: Proceedings of SPIE 5759, smart structures and materials 2005: Electroactive Polymer Actuators and Devices (EAPAD), pp 194–202. https://doi.org/10.1117/12.592267

  54. Kikuchi K, Tsuchitani S (2009) Nafion®-based polymer actuators with ionic liquids as solvent incorporated at room temperature. J Appl Phys 106:053519. https://doi.org/10.1063/1.3204961

    Article  CAS  Google Scholar 

  55. Nakamura T, Ihara T, Horiguchi T, Mukai T, Asaka K (2009) Measurement and modeling of electro-chemical properties of ion polymer, metal composite by complex impedance analysis. SICE J Control Meas Syst Integr 2(6):373–378

    Article  Google Scholar 

  56. Bennett M, Leo D (2005) Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites. In: Proceedings of SPIE smart structures and materials 2005: Electroactive Polymer Actuators and Devices (EAPAD), 5759, 506. https://doi.org/10.1117/12.599849

  57. Hiranoa LA, Acerbia LW, Kikuchi K, Tsuchitani S, Scuracchio CH (2015) Study of the influence of the hydration level on the electromechanical behavior of Nafion based ionomeric polymer-metal composites actuators. Mater Res 181:70–76. https://doi.org/10.1590/1516-1439.353214

    Article  CAS  Google Scholar 

  58. Kikuchi K, Sakamoto T, Tsuchitani S, Asaka K (2011) Comparative study of bending characteristics of ionic polymer actuators containing ionic liquids for modeling actuation. J Appl Phys 109:073505. https://doi.org/10.1063/1.3556434

    Article  CAS  Google Scholar 

  59. Panwar V, Lee C, Ko SY, Park JO, Park S (2012) Dynamic mechanical, electrical, and actuation properties of ionic polymer metal composites using PVDF/PVP/PSSA blend membranes. Mater Chem Phys 35:928–937. https://doi.org/10.1016/j.matchemphys.2012.05.081

    Article  CAS  Google Scholar 

  60. Shen Q, Trabia S, Stalbaum T, Palmre V, Kim K, Oh IK (2016) A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation. Sci Rep 6:24462. https://doi.org/10.1038/srep24462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shen Q, Stalbaum T, Trabia S, Hwang T, Hunt R, Kim K (2017) Modeling of a soft multiple-shape-memory ionic polymer-metal composite actuator. In: Proceedings of SPIE, behavior and mechanics of multifunctional materials and composites 2017, 10165, 101650C. https://doi.org/10.1117/12.2258495

  62. Ishihara D, Kikuchi K, Morioka D, Yokoi K (2015) Development of a prototype of variable stiffness ion conductive polymer actuator with a shape memory polymer. In: Proceeding of the 34th Chinese control conference and SICE annual conference 2015 (CCC&SICE2015), ThC04-2. https://doi.org/10.1109/SICE.2015.7285509

  63. Carrico JD, Traeden NW, Aureli M, Leang KK (2015) Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Mater Struct 24(12):125021. https://doi.org/10.1088/0964-1726/24/12/125021

    Article  CAS  Google Scholar 

  64. Carrico JD, Kim KJ, Leang KK (2017) 3D-printed ionic polymer-metal composite soft crawling robot. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA) 2017, pp 4313–4320. https://doi.org/10.1109/ICRA.2017.7989496

  65. Kruusamäe K, Punning A, Aabloo A, Asaka K (2015) Self-sensing ionic polymer actuators: a review. Actuators 4:17–38. https://doi.org/10.3390/act4010017

    Article  Google Scholar 

  66. Kikuchi K, Taniguchi T, Miki H, Tsuchitani S, Asaka K (2014) Microfabrication of ionic polymer actuators by selective plasma irradiation. IEEJ Trans Electr Electron Eng 9(5):572–574. https://doi.org/10.1002/tee.22009

    Article  CAS  Google Scholar 

  67. Tsuchitani S, Kikuchi K, Shimizu I, Taniguchi T, Miki H (2016) IPMC actuators fabricated using MEMS technology. In: CIMTEC 2016 – 7th Forum on New Material, H-3:IL04

    Article  Google Scholar 

  68. Shimizu I, Kikuchi K, Tsuchitani S (2009) Variable-focal length Lens using IPMC. In: Proceedings of ICROS-SICE international joint conference 2009, pp 4752–4756

    Google Scholar 

  69. Tsuchitani S, Kikuchi K, Hiraoka D Shimizu I (2009) Ionic conductive polymer actuators fabricated using MEMS technology. In: 4th conference on artificial muscle – 5th world congress on biomimetics, Artificial Muscles and Nano-Bio

    Google Scholar 

  70. Kikuchi K, Tsuchitani S, Shimizu I (2010) Fabrication of a planer-type ionic polymer actuator fabricated with MEMS technology, 2010 MRS Fall meeting, HH411

    Google Scholar 

  71. Kikuchi K, Miwa M, Tsuchitani S (2007) Variable-focal length lens using a soft actuator, the abstracts of ATEM: international conference on advanced technology in experimental mechanics: Asian conference on experimental mechanics, OS16-4-1. https://doi.org/10.1299/jsmeatem.2007.6._OS16-4-1-

  72. Horiuchi T, Mihashi T, Fujikado T, Oshika T, Asaka K (2016) Voltage-controlled accommodating IOL system using an ion polymer metal composite actuator. Opt Express 24(20):23280–23288. https://doi.org/10.1364/OE.24.023280

    Article  CAS  PubMed  Google Scholar 

  73. Horiuchi T, Mihashi T, Fijikado T, Oshika T, Asaka K (2017) Voltage-controlled IPMC actuators for accommodating intra-ocular lens systems. Smart Mater Struct 26(4):045021. https://doi.org/10.1088/1361-665X/aa61e8

    Article  Google Scholar 

  74. Addinall R, Sugino T, Neuhaus R, Kosidlo U, Tonner F, Glanz C, Kolaric I, Bauernhansl T, Asaka K (2014) Integration of CNT-based actuators for bio-medical applications – example printed circuit board CNT actuator pipette. In: Proceedings of 2014 IEEE/ASME international conference on advanced intelligent mechatronics, pp 1436–1441

    Google Scholar 

  75. Goya K, Fuchiwaki Y, Tanaka M, Addinall R, Ooie T, Sugino T, Asaka K (2017) A micropipette system based on low driving voltage carbon nanotube actuator. Microsyst Technol 23(7):2657–2661. https://doi.org/10.1007/s00542-016-2943-y

    Article  CAS  Google Scholar 

  76. Horiuchi T, Sugino T, Asaka K (2017) Elliptical-like cross-section ionic polymer-metal composite actuator for catheter surgery. Sens Actuators A Phys 267:235–241. https://doi.org/10.1016/j.sna.2017.10.002

    Article  CAS  Google Scholar 

  77. Jain RK, Datta S, Majumder S, Dutta A (2011) Two IPMC fingers based micro gripper for handling. Int J Adv Robot Syst 8(1):1–9. https://doi.org/10.5772/10523

    Article  Google Scholar 

  78. Norioka T, Kikuchi K, Tsuchitani S, Asaka K (2016) A novel approach of development of a reverse-operation soft gripper using ionic polymer-metal composite with micro printing technique, in: Proceedings of the 10th Asian-Australasian conference on composite materials (ACCM-10) T11-3

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by JSPS KAKENHI Grant-in-Aid for Scientific Research (C) 17K06264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunitomo Kikuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kikuchi, K., Tsuchitani, S. (2019). Ionic Conductive Polymers. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_7

Download citation

Publish with us

Policies and ethics