Skip to main content

Integration of Soft Actuators Based on a Biomolecular Motor System to Develop Artificial Machines

  • Chapter
  • First Online:
Book cover Soft Actuators

Abstract

Fabrication of soft actuators that may perform multiple tasks simultaneously, as observed for the complex natural systems, is one of the goals in biomimetics. Biomolecular motor systems are the smallest natural machine that can perform mechanical work with a high efficiency. Because of their wide range of scalability and adaptability, the biomolecular motor systems are promising candidates for developing biomimetic soft actuators. The biological power units are able to convert chemical energy obtained from hydrolysis of adenosine triphosphate (ATP) into mechanical work. By virtue of their highly efficient mechanism of power generation, they are able to form highly ordered structures in living organism, which facilitates their emergent functions. To exploit the advantages of the biomolecular motor systems, nowadays they are used as building blocks of biomimetic soft actuators or devices. In this chapter we discuss the latest applications of a classical biomolecular motor system microtubule/kinesin in designing biomimetic soft actuators and micro devices. Nowadays the microtubule/kinesin system can be reconstructed and self-assembled or integrated to complex hierarchical structures which offer emergent functions. Utilization of biomolecular motor systems can greatly advance the development of highly efficient biomimetic soft actuators which in turn would benefit soft robotics in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miriyev A, Stack K, Lipson H (2017) Soft material for soft actuators. Nat Commun 8:596

    Article  Google Scholar 

  2. Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521:467–475

    Article  CAS  Google Scholar 

  3. Trimmer B (2013) Soft robots. Curr Biol 23:R639–R641

    Article  CAS  Google Scholar 

  4. Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–294

    Article  CAS  Google Scholar 

  5. Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244

    Article  CAS  Google Scholar 

  6. Osada Y, Gong JP (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837

    Article  CAS  Google Scholar 

  7. Bar-Cohen Y (ed) (2001) Electroactive polymer (EAP) actuators as artificial muscles, reality, potential and challenges. SPIE, Bellingham

    Google Scholar 

  8. Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18:637–640

    Article  CAS  Google Scholar 

  9. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer, Sunderland

    Google Scholar 

  10. Harold FM (2001) The way of the cell. Oxford University Press, Oxford

    Google Scholar 

  11. Bachand GD, Bouxsein NF, VanDelinder V, Bachand M (2014) Biomolecular motors in nanoscale materials, devices, and systems. WIREs Nanomed Nanobiotechnol 6:163–177

    Article  CAS  Google Scholar 

  12. Kakugo A, Sugimoto S, Gong JP, Osada Y (2002) Gel machines constructed from chemically cross-linked actin and myosins. Adv Mater 14:1124–1126

    Article  CAS  Google Scholar 

  13. Hess H, Bachand GD (2005) Biomolecular motors. Mater Today 8:22–29

    Article  Google Scholar 

  14. Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a thousand robot swarm. Science 345:795–799

    Article  CAS  Google Scholar 

  15. Schaller V, Weber C, Semmrich C, Frey E, Bausch AR (2010) Polar patterns of driven filaments. Nature 467:73–77

    Article  CAS  Google Scholar 

  16. Sumino Y, Nagai KH, Shitaka Y, Tanaka D, Yoshikawa K, Chaté H, Oiwa K (2012) Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483:448–452

    Article  CAS  Google Scholar 

  17. Hess H, Ross JL (2017) Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 46:5570–5587

    Article  CAS  Google Scholar 

  18. Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203

    Article  CAS  Google Scholar 

  19. Drabik P, Gusarov S, Kovalenko A (2007) Microtubule stability studied by three-dimensional molecular theory of solvation. Biophys J 92:394–403

    Article  CAS  Google Scholar 

  20. Chrétien D, Metoz F, Verde F, Karsenti E, Wade RH (1992) Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J Cell Biol 117:1031–1040

    Article  Google Scholar 

  21. Hirokawa N, Takemura R (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp Cell Res 301:50–59

    Article  CAS  Google Scholar 

  22. Sharp DJ, Rogers GC, Scholey JM (2000) Microtubule motors in mitosis. Nature 407:41–47

    Article  CAS  Google Scholar 

  23. Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158

    Article  CAS  Google Scholar 

  24. Hunt AJ, Gittes F, Howard J (1994) The force exerted by a single kinesin molecule against a viscous load. Biophys J 67:766–781

    Article  CAS  Google Scholar 

  25. Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189

    Article  CAS  Google Scholar 

  26. Schnapp BJ, Vale RD, Sheetz MP, Reese TS (1985) Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell 40:455–462

    Article  CAS  Google Scholar 

  27. Grzybowski BA, Wiles JA, Whitesides GM (2003) Dynamic self-assembly of rings of charged metallic spheres. Phys Rev Lett 90:083903

    Article  Google Scholar 

  28. Hess H, Clemmens J, Brunner C, Doot R, Luna S, Karl-Heinz E, Vogel V (2005) Molecular self-assembly of “nanowires and nanospools” using active transport. Nano Lett 5:629–633

    Article  CAS  Google Scholar 

  29. Tamura Y, Kawamura R, Shikinaka K, Kakugo A, Osada Y, Gong JP, Mayama H (2011) Dynamic self-organization and polymorphism of microtubule assembly through active interactions with kinesin. Soft Matter 7:5654–5659

    Article  CAS  Google Scholar 

  30. Idan O, Lam A, Kamcev J, Gonzales J, Agarwal A, Hess H (2012) Nanoscale transport enables active self-assembly of millimeter-scale wires. Nano Lett 12:240–245

    Article  CAS  Google Scholar 

  31. Hess H (2006) Self-assembly driven by molecular motors. Soft Matter 2:669–677

    Article  CAS  Google Scholar 

  32. Wada S, Kabir AMR, Ito M, Inoue D, Sada K, Kakugo A (2015) Effect of length and rigidity of microtubules on the size of ring-shaped assemblies obtained through active self-organization. Soft Matter 11:1151–1157

    Article  CAS  Google Scholar 

  33. Jeune-Smith Y, Hess H (2010) Engineering the length distribution of microtubules polymerized in vitro. Soft Matter 6:1778–1784

    Article  CAS  Google Scholar 

  34. Inoue D, Kabir AMR, Mayama H, Gong JP, Sada K, Kakugo A (2013) Growth of ring-shaped microtubule assemblies through stepwise active self-organization. Soft Matter 9:7061–7068

    Article  CAS  Google Scholar 

  35. Ray S, Meyhöfer E, Milligan RA, Howard J (1993) Kinesin follows the microtubule’s protofilament axis. J Cell Biol 121:1083–1093

    Article  CAS  Google Scholar 

  36. Kawamura R, Kakugo A, Shikinaka K, Osada Y, Gong JP (2008) Ring-shaped assembly of microtubules shows preferential counterclockwise motion. Biomacromolecules 9:2277–2282

    Article  CAS  Google Scholar 

  37. Kakugo A, Kabir AMR, Hosoda N, Shikinaka K, Gong JP (2011) Controlled clockwise-counterclockwise motion of the ring-shaped microtubules assembly. Biomacromolecules 12:3394–3399

    Article  CAS  Google Scholar 

  38. Wada S, Kabir AMR, Kawamura R, Ito M, Inoue D, Sada K, Kakugo A (2015) Controlling the bias of rotational motion of ring-shaped microtubule assembly. Biomacromolecules 16:374–378

    Article  CAS  Google Scholar 

  39. Vicsek T, Zafeiris A (2012) Collective motion. Phys Rep 517:71–140

    Article  Google Scholar 

  40. Inoue D, Mahmot B, Kabir AMR, Farhana TI, Tokuraku K, Sada K, Konagaya A, Kakugo A (2015) Depletion force induced collective motion of microtubules driven by kinesin. Nanoscale 7:18054–18061

    Article  CAS  Google Scholar 

  41. Köhler S, Lieleg O, Bausch AR (2008) Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose. PLoS One 3:e2736

    Article  Google Scholar 

  42. Saito A, Farhana TI, Kabir AMR, Inoue D, Konagaya A, Sada K, Kakugo A (2017) Understanding the emergence of collective motion of microtubules driven by kinesins: role of concentration of microtubules and depletion force. RSC Adv 7:13191–13197

    Article  CAS  Google Scholar 

  43. Yashin VV, Balazs AC (2006) Pattern formation and shape changes in self-oscillating polymer gels. Science 314:798–801

    Article  CAS  Google Scholar 

  44. Kabir AMR, Wada S, Inoue D, Tamura Y, Kajihara T, Mayama H, Sada K, Kakugo A, Gong JP (2012) Formation of ring-shaped assembly of microtubules with a narrow size distribution at an air-buffer interface. Soft Matter 8:10863–10867

    Article  Google Scholar 

  45. Ito M, Kabir AMR, Islam MS, Inoue D, Wada S, Sada K, Konagaya A, Kakugo A (2016) Mechanical oscillation of dynamic microtubule rings. RSC Adv 6:69149–69155

    Article  CAS  Google Scholar 

  46. Hess H (2011) Engineering applications of biomolecular motors. Annu Rev Biomed Eng 13:429–450

    Article  CAS  Google Scholar 

  47. Sanchez T, Welch D, Nicastro D, Dogic Z (2011) Cilia-like beating of active microtubule bundles. Science 333:456–459

    Article  CAS  Google Scholar 

  48. Sasaki R, Kabir AMR, Inoue D, Anan S, Kimura AP, Konagaya A, Sada K, Kakugo A (2018) Construction of artificial cilia from microtubules and kinesins through a well-designed bottom-up approach. Nanoscale 10:6323–6332

    Article  CAS  Google Scholar 

  49. Cadart C, Zlotek-Zlotkiewicz E, Berre ML, Piel M, Matthews HK (2014) Exploring the function of cell shape and size during mitosis. Dev Cell 29:159–169

    Article  CAS  Google Scholar 

  50. Islam MS, Kuribayashi-Shigetomi K, Kabir AMR, Inoue D, Sada K, Kakugo A (2017) Role of confinement in the active self-organization of kinesin-driven microtubules. Sensors Actuators B Chem 247:53–60

    Article  CAS  Google Scholar 

  51. Sato Y, Hiratsuka Y, Kawamata I, Murata S, Nomura SM (2017) Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci Robotics 2:eaal3735

    Article  Google Scholar 

  52. Tsuji M, Kabir AMR, Ito M, Inoue D, Kokado K, Sada K, Kakugo A (2017) Motility of microtubules on the inner surface of water-in-oil emulsion droplets. Langmuir 33:12108–12113

    Article  CAS  Google Scholar 

  53. Goel A, Vogel V (2008) Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat Nanotechnol 3:465–475

    Article  CAS  Google Scholar 

  54. Hagiya M, Konagaya A, Kobayashi S, Saito H, Murata S (2014) Molecular robots with sensors and intelligence. Acc Chem Res 47:1681–1690

    Article  CAS  Google Scholar 

  55. Hess H, Clemmens J, Howard J, Vogel V (2002) Surface imaging by self-propelled nanoscale probes. Nano Lett 2:113–116

    Article  CAS  Google Scholar 

  56. Hess H, Howard J, Vogel V (2002) A piconewton forcemeter assembled from microtubules and kinesins. Nano Lett 2:1113–1115

    Article  Google Scholar 

  57. Inoue D, Nitta T, Kabir AMR, Sada K, Gong JP, Konagaya A, Kakugo A (2016) Sensing surface mechanical deformation using active probes driven by motor proteins. Nat Commun 7:12557

    Article  CAS  Google Scholar 

  58. Kabir AMR, Inoue D, Kakugo A, Kamei A, Gong JP (2011) Prolongation of the active lifetime of a biomolecular motor for in vitro motility assay by using an inert atmosphere. Langmuir 27:13659–13668

    Article  CAS  Google Scholar 

  59. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford/New York

    Google Scholar 

  60. Keya JJ, Suzuki R, Kabir AMR, Inoue D, Asanuma H, Sada K, Hess H, Kuzuya A, Kakugo A (2018) DNA-assisted swarm control in a biomolecular motor system. Nat Commun 9:453

    Article  Google Scholar 

  61. Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascade. Science 332:1196–1201

    Article  CAS  Google Scholar 

  62. Wollman AJM, Sanchez-Cano C, Carstairs HMJ, Cross RA, Turberfield AJ (2014) Transport and self-organization across different length scales powered by motor proteins and programmed by DNA. Nat Nanotechnol 9:44–47

    Article  CAS  Google Scholar 

  63. Hiyama S, Moritani Y, Gojo R, Takeuchi S, Sutoh K (2010) Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip. Lab Chip 10:2741–2748

    Article  CAS  Google Scholar 

  64. Früh SM, Steuerwald D, Simon U, Vogel V (2012) Covalent cargo loading to molecular shuttles via copper-free “click chemistry”. Biomacromolecules 13:3908–3911

    Article  Google Scholar 

  65. Keya JJ, Kabir AMR, Inoue D, Sada K, Hess H, Kuzuya A, Kakugo A (2018) Control of swarming of molecular robots. Sci Rep 8:11756

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kakugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keya, J.J., Kayano, K., Kabir, A.M.R., Kakugo, A. (2019). Integration of Soft Actuators Based on a Biomolecular Motor System to Develop Artificial Machines. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_39

Download citation

Publish with us

Policies and ethics