Skip to main content

Modeling of Dielectric Gel Using Multi-physics Coupling Theory

  • Chapter
  • First Online:
  • 1469 Accesses

Abstract

Gel is an organic mixture of polymer network and solvents. Owing to the large amount of solvents, gel is very soft and self-compatible. This chapter introduces dielectric gel, where both the polymer network and solvents are non-conductive. The mechanism of voltage-induced deformation in dielectric gel is explained with the physics of the solvent migration. Bending and creeping actuation in dielectric gel can also be induced using the design of electrode configuration. In the theory of dielectric gel, electro-chemo-mechanical quantities are coupled in a thermodynamics model, and the constitutive relations are obtained. The actuation model is implanted into several actuator cases to characterize their specific performances. Some examples of dielectric gel in robotics are illustrated. They include an amoeba robot, an artificial lens, and a soft exoskeleton, all showing dielectric gel a good candidate in soft robotics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shankar R, Krishnan AK, Ghosh TK, Spontak RJ (2008) Triblock copolymer organogels as high-performance dielectric elastomers. Macromolecules 41(16):6100–6109

    Article  CAS  Google Scholar 

  2. Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6(12):2583–2590

    Article  CAS  Google Scholar 

  3. Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ et al (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133

    Article  CAS  Google Scholar 

  4. Fu F, Chen Z, Zhao Z, Wang H, Shang L, Gu Z et al (2017) Bio-inspired self-healing structural color hydrogel. Proc Natl Acad Sci U S A 114(23):5900

    Article  CAS  Google Scholar 

  5. Ali M, Hirai T (2012) Relationship between electrode polarization and electrical actuation of dielectric pvc gel actuators. Soft Matter 8(13):3694–3699

    Article  CAS  Google Scholar 

  6. Ali M, Hirai T (2011) Characteristics of the creep-induced bending deformation of a pvc gel actuator by an electric field. J Mater Sci 46(24):7681–7688

    Article  CAS  Google Scholar 

  7. Zulhash UM, Yamaguchi M, Watanabe M, Hirai T (2002) Electrically induced creeping and bending deformation of plasticized poly(vinyl chloride). Chem Lett 30(4):360–361

    Google Scholar 

  8. Hirai T, Zheng J, Watanabe M, Shirai H, Yamaguchi M (1999) Electroactive nonionic polymer gel-swift bending and crawling motion. Mrs Proceedings, 600

    Google Scholar 

  9. Hirai T (2014) Dielectric gels. In: Soft actuators, pp 169–182

    Google Scholar 

  10. Honda M, Kataoka K, Seki T, Takeoka Y (2009) Confined stimuli-responsive polymer gel in inverse opal polymer membrane for colorimetric glucose sensor. Langmuir Acs J Surf Colloids 25(14):8349–8356

    Article  CAS  Google Scholar 

  11. Hong W, Zhao X, Zhou J, Suo Z (2008) A theory of coupled diffusion and large deformation in polymeric gels. J Mech Phys Solids 56(5):1779–1793

    Article  CAS  Google Scholar 

  12. Hong W, Liu Z, Suo Z (2009) Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int J Solids Struct 46(17):3282–3289

    Article  CAS  Google Scholar 

  13. Li B, Zhang J, Chen H, Li D (2016) Voltage-induced pinnacle response in the dynamics of dielectric elastomers. Phys Rev E 93(5):052506

    Article  Google Scholar 

  14. Wang X, Hong W (2011) Theory of ionic polymer conductor network composite. Appl Phys Lett 98(8):436

    Google Scholar 

  15. Li B, Chang LF, Asaka K, Chen H, Li D (2016) A multi-physical model of actuation response in dielectric gels. Smart Mater Struct 25(12):125032

    Article  Google Scholar 

  16. Asaka K, Okuzaki H (2014) Soft actuators: materials, modeling, applications, and future perspectives

    Google Scholar 

  17. Suzuki A, Yoshikawa S, Bai G (1999) Shrinking pattern and phase transition velocity of poly(n-isopropylacrylamide) gel. J Chem Phys 111(1):360–367

    Article  CAS  Google Scholar 

  18. Shiga T, Hirose Y, Okada A, Kurauchi T (1992) Electric field-associated deformation of polyelectrolyte gel near a phase transition point. J Appl Polym Sci 46(4):635–640

    Article  CAS  Google Scholar 

  19. Suzuki A, Hara T (2001) Kinetics of one-dimensional swelling and shrinking of polymer gels under mechanical constraint. J Chem Phys 114(11):5012–5015

    Article  CAS  Google Scholar 

  20. Meng F, Terentjev EM (2016) Transient network at large deformations: elastic–plastic transition and necking instability. Polymers 8(4):108

    Article  Google Scholar 

  21. Li B, Chen H, Zhou J (2013) Electromechanical stability of dielectric elastomer composites with enhanced permittivity. Compos Part A 52(5):55–61

    Article  CAS  Google Scholar 

  22. Liu L, Liu Y, Luo X, Li B, Leng J (2012) Electromechanical instability and snap-through instability of dielectric elastomers undergoing polarization saturation. Mech Mater 55(14):60–72

    Article  Google Scholar 

  23. Li Y, Hashimoto M (2015) Pvc gel based artificial muscles: characterizations and actuation modular constructions. Sen Actuators A Phys 233:246–258

    Article  CAS  Google Scholar 

  24. Xia H, Hirai T (2010) Electric-field-induced local layer structure in plasticized pvc actuator. J Phys Chem B 114(33):10756–10762

    Article  CAS  Google Scholar 

  25. Hirai T, Ogiwara T, Fujii K, Ueki T, Kinoshita K, Takasaki M (2010) Electrically active artificial pupil showing amoeba-like pseudopodial deformation. Adv Mater 21(28):2886–2888

    Article  Google Scholar 

  26. Li Y, Maeda Y, Hashimoto M (2015) Lightweight, soft variable stiffness gel spats for walking assistance. Int J Adv Robot Syst 12(12):175

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from the National Natural Science Foundation of China (NO. 91748124, 91648110, 51605131, and 51505369), Natural Science Foundation of Anhui Province, China (No. 1608085QE100), basic research program of Changzhou city (CJ20179050), and key research program of Jiangsu province (BE2016055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, B., Chang, L., Wang, Y. (2019). Modeling of Dielectric Gel Using Multi-physics Coupling Theory. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_31

Download citation

Publish with us

Policies and ethics