Skip to main content

Sensing Properties and Physical Model of Ionic Polymer

  • Chapter
  • First Online:
Soft Actuators

Abstract

Ionic polymer shows great potential to imitate natural mechanical sensation because of ion-migration mechanism. In this chapter, sensing properties of IPMC sensor were introduced. Under a bending deformation, how ambient humidity influenced the voltage response of IPMC was investigated. And then the effect of various cations on the electrical responses of IPMC at various ambient humidities was revealed by a series of experiments. The electrical response evolvement with water content and cation type was explained thoroughly based on transport theory. Further, a multi-physical model was set up for IPMC sensor by utilizing the same equations for IPMC actuator. Numerical results showed that the model was capable to fit the voltage and current response of IPMC with various cations at different humidities well. Finally, we presented a new concept of ionic polymer senor based on deeply understanding on sensing mechanism. A 3 × 3 pressure sensor array was presented, which showed much higher voltage. It proved that ionic polymer sensor can work as a pressure sensor, not a cantilever anymore. It makes us believe that ionic polymer sensor is a promising direction and still far from well developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall JE (2010) Guyton and Hall textbook of medical physiology, 12th edn. Elsevier Health Sciences, Philadelphia, pp 57–69

    Google Scholar 

  2. Shahinpoor M (1995, May) New effect in ionic polymeric gels: the ionic flexogelectric effect. In: Smart structures and materials 1995: smart materials, vol 2441, pp 42–54. International Society for Optics and Photonics

    Google Scholar 

  3. Shahinpoor M, Kim K (2001) Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct 10(4):819

    Article  CAS  Google Scholar 

  4. Kamamichi N, Yamakita M, Asaka K, Luo Z, Mukai T (2007, October) Sensor property of a novel EAP device with ionic-liquid-based bucky gel. In Sensors, 2007 IEEE, pp 221–224

    Google Scholar 

  5. Wu Y, Alici G, Madden J, Spinks G, Wallace G (2007) Soft mechanical sensors through reverse actuation in polypyrrole. Adv Funct Mater 17(16):3216–3222

    Article  CAS  Google Scholar 

  6. Kruusamäe K, Punning A, Aabloo A, Asaka K (2015) Self-sensing ionic polymer actuators: a review. Actuators 4(1):17–38

    Article  Google Scholar 

  7. Tiwari R, Kim K (2012) IPMC as a mechanoelectric energy harvester: tailored properties. Smart Mater Struct 22(1):015017

    Article  Google Scholar 

  8. Shahinpoor M, Bar-Cohen Y, Xue T, Harrison J, Smith J (1998, July) Some experimental results on ionic polymer-metal composites (IPMC) as biomimetic sensors and actuators. In Smart structures and materials 1998: smart materials technologies, vol 3324, pp 251–268. International Society for Optics and Photonics

    Google Scholar 

  9. Wang J, Sato H, Xu C, Taya M (2009) Bioinspired design of tactile sensors based on flemion. J Appl Phys 105(8):083515

    Article  Google Scholar 

  10. Konyo M, Konishi Y, Tadokoro S, Kishima T (2004) Development of velocity sensor using ionic polymer-metal composites. Proc SPIE 5385 Smart Struct Mater 5385:307–318

    CAS  Google Scholar 

  11. Bonomo C, Fortuna L, Giannone P, Graziani S (2005) A method to characterize the deformation of an IPMC sensing membrane. Sensors Actuators A 123–124:146–154

    Article  Google Scholar 

  12. Bahramzadeh Y, Shahinpoor M (2011) Dynamic curvature sensing employing ionic polymer-metal composite sensors. Smart Mater Struct 20:094011

    Article  Google Scholar 

  13. Lipomi D, Vosgueritchian M, Tee B, Hellstrom S, Lee J, Fox C, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Zhang H, Lin Z, Zhou Y, Jing Q, Su Y, Yang J, Chen J, Hu C, Wang Z (2013) Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7(10):9213–9222

    Article  CAS  PubMed  Google Scholar 

  15. Gao Q, Meguro H, Okamoto S, Kimura M (2012) Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies. Langmuir 28(51):17593–17596

    Article  CAS  PubMed  Google Scholar 

  16. Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T (2004) A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci 101(27):9966–9970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Newbury K, Leo D (2002) Electromechanical modeling and characterization of ionic polymer benders. J Intell Mater Syst Struct 13(1):51–60

    Article  Google Scholar 

  18. Farinholt K, Leo D (2004) Modeling of electromechanical charge sensing in ionic polymer transducers. Mech Mater 36(5–6):421–433

    Article  Google Scholar 

  19. Zhu Z, Chen H, Wang Y, Luo B, Chang L, Li B, Chen L (2011) NMR study on mechanisms of ionic polymer-metal composites deformation with water content. EPL (Europhys Lett) 96(2):27005

    Article  Google Scholar 

  20. Shahinpoor M, Kim K (2002) Mass transfer induced hydraulic actuation in ionic polymer-metal composites. J Intell Mater Syst Struct 13(6):369–376

    Article  CAS  Google Scholar 

  21. Lu Z, Polizos G, Macdonald D, Manias E (2008) State of water in perfluorosulfonic ionomer (Nafion 117) proton exchange membranes. J Electrochem Soc 155(2):B163–B171

    Article  CAS  Google Scholar 

  22. Fujiwara N, Asaka K, Nishimura Y, Oguro K, Torikai E (2000) Preparation of gold-solid polymer electrolyte composites as electric stimuli-responsive materials. Chem Mater 12(6):1750

    Article  CAS  Google Scholar 

  23. Zhu Z, Horiuchi T, Kruusamäe K, Chang L, Asaka K (2016) Influence of ambient humidity on the voltage response of ionic polymer–metal composite sensor. J Phys Chem B 120(12):3215–3225

    Article  CAS  PubMed  Google Scholar 

  24. Liu F, Han G, Cheng W, Wu Q (2015) Sorption isotherm of southern yellow pine-high density polyethylene composites. Dent Mater 8:368–378

    CAS  Google Scholar 

  25. Must I, Johanson U, Kaasik F, Poldsalu I, Punning A, Aabloo A (2013) Charging a supercapacitor-like laminate with ambient moisture: from a humidity sensor to an energy harvester. Phys Chem Chem Phys 15:9605

    Article  CAS  PubMed  Google Scholar 

  26. Mauritz K, Moore R (2004) State of understanding of Nafion. Chem Rev 104(10):4535–4586

    Article  CAS  PubMed  Google Scholar 

  27. Zhu Z, Horiuchi T, Kruusamäe K, Chang L, Asaka K (2016) The effect of ambient humidity on the electrical response of ion-migration-based polymer sensor with various cations. Smart Mater Struct 25(5):055024

    Article  Google Scholar 

  28. Zhu Z, Horiuchi T, Takagi K, Takeda J, Chang L, Asaka K (2016) Effects of cation on electrical responses of ionic polymer-metal composite sensors at various ambient humidities. J Appl Phys 120(8):084906

    Article  Google Scholar 

  29. Zhu Z, Chang L, Asaka K, Wang Y, Chen H, Zhao H, Li D (2014) Comparative experimental investigation on the actuation mechanisms of ionic polymer–metal composites with different backbones and water contents. J Appl Phys 115(12):124903

    Article  Google Scholar 

  30. Zhu Z, Asaka K, Chang L, Takagi K, Chen H (2013) Physical interpretation of deformation evolvement with water content of ionic polymer-metal composite actuator. J Appl Phys 114(18):184902

    Article  Google Scholar 

  31. Zhu Z, Chang L, Horiuchi T, Takagi K, Aabloo A, Asaka K (2016) Multi-physical model of cation and water transport in ionic polymer-metal composite sensors. J Appl Phys 119(12):124901

    Article  Google Scholar 

  32. Li J, Nemat-Nasser S (2000) Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane. Mech Mater 32(5):303

    Article  Google Scholar 

  33. Boyce M, Arruda E (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523

    Article  CAS  Google Scholar 

  34. Arruda E, Boyce M (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41(2):389–412

    Article  CAS  Google Scholar 

  35. Hong L (2015) Ph.D. thesis, Michigan State University, East Lansing

    Google Scholar 

  36. Bonomo C, Fortuna L, Giannone P, Graziani S (2006) A circuit to model the electrical behavior of an ionic polymer-metal composite. IEEE Trans Circuits Syst I Regul Pap 53(2):338–350

    Article  Google Scholar 

  37. Wang Y, Zhu Z, Chen H, Luo B, Chang L, Wang Y, Li D (2014) Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators. Smart Mater Struct 23(12):125015

    Article  Google Scholar 

  38. Chen Z, Tan X, Will A, Ziel C (2007) A dynamic model for ionic polymer–metal composite sensors. Smart Mater Struct 16(4):1477

    Article  CAS  Google Scholar 

  39. Gao F, Weiland L (2010) Ionic polymer transducers in sensing: Implications of the streaming potential hypothesis for varied electrode architecture and loading rate. J Appl Phys 108(3):034910

    Article  Google Scholar 

  40. Shen Q, Kim K, Wang T (2014) Electrode of ionic polymer-metal composite sensors: modeling and experimental investigation. J Appl Phys 115(19):194902

    Article  Google Scholar 

  41. Akle B, Habchi W, Wallmersperger T, Akle E, Leo D (2011) High surface area electrodes in ionic polymer transducers: numerical and experimental investigations of the electro-chemical behavior. J Appl Phys 109(7):074509

    Article  Google Scholar 

  42. Chang L, Asaka K, Zhu Z, Wang Y, Chen H, Li D (2014) Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite. J Appl Phys 115(24):244901

    Article  Google Scholar 

  43. Palmre V, Pugal D, Kim K (2014, March) Effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors. In Electroactive Polymer Actuators and Devices (EAPAD) 2014, vol 9056, p 905605. International Society for Optics and Photonics

    Google Scholar 

  44. Xie G, Okada T (1996) Pumping effects in water movement accompanying cation transport across Nafion 117 membranes. Electrochim Acta 41(9):1569–1571

    Article  CAS  Google Scholar 

  45. Zhu Z, Asaka K, Chang L, Takagi K, Chen H (2013) Multiphysics of ionic polymer–metal composite actuator. J Appl Phys 114(8):084902

    Article  Google Scholar 

  46. Nemat-Nasser S, Wu Y (2003) Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms. J Appl Phys 93(9):5255–5267

    Article  CAS  Google Scholar 

  47. Wang Y, Chen H, Wang Y, Zhu Z, Li D (2014) Effect of dehydration on the mechanical and physicochemical properties of gold-and palladium-ionomeric polymer-metal composite (IPMC) actuators. Electrochim Acta 129:450–458

    Article  CAS  Google Scholar 

  48. Zhu Z, Wang Y, Hu X, Sun X, Chang L, Lu P (2016) An easily fabricated high performance ionic polymer based sensor network. Appl Phys Lett 109(7):073504

    Article  Google Scholar 

  49. Gudarzi M, Smolinski P, Wang Q (2017) Compression and shear mode ionic polymer-metal composite (IPMC) pressure sensors. Sensors Actuators A Phys 260:99–111

    Article  CAS  Google Scholar 

  50. Kocer B, Zangrilli U, Akle B, Weiland L (2015) Experimental and theoretical investigation of ionic polymer transducers in shear sensing. J Intell Mater Syst Struct 26(15):2042–2054

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zicai Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Z., Chen, H., Wang, Y. (2019). Sensing Properties and Physical Model of Ionic Polymer. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_29

Download citation

Publish with us

Policies and ethics